Electrochemical Synthesis of CdS on Multi Walled Carbon Nanotubes Paste Electrode

Article Preview

Abstract:

CdS has been synthesized electrochemically on multi walled carbon nanotubes paste electrode (MWCNPE) from aqueous solutions consists of Cd2+ and S2O32- at40°C, using potentiostatic technique.Cyclic voltammetric response of thiosulfateand Cd2+ individually and together has been investigated. The optimum conditions of CdS electrodeposition were determined. Interesting data were obtained and discussed in this work. The mechanism of CdS electrodeposition was suggested. Moreover, the electrodeposited CdS is of n-type semiconductor. Ithas been investigated by the Mott-Schotky test, and also the concentrations of donors (ND) were determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

417-422

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, Gates, Y. D. Yin, F. Kim andY. Q.

Google Scholar

[2] Yan: Adv. Mater. Vol. 15 (2003), p.353.

Google Scholar

[3] S. Iijima: Nature. Vol. 354(1991), p.56.

Google Scholar

[4] A. M. Morales andC. M. Lieber: Science. Vol. 279(1998), p.208.

Google Scholar

[5] Z. Yao, H.W.C. Postma, L. Balents and C. Dekker: Nature. Vol. 402 (1999), p.273–276.

Google Scholar

[6] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho and H. Dail: Science. Vol.

Google Scholar

[7] 287 (2000), p.622–625.

Google Scholar

[8] W.B. Choi, S. Chae, E. Bae, J. Lee, B. Cheong, J. Kim and J. Kim: Appl. Phys. Lett. Vol. 82.

Google Scholar

[9] (2003), p.275–277.

Google Scholar

[10] J. Hu, M. Ouyang, P. yang and C.M. Lieber: Nature. Vol. 399 (1999), p.48–51.

Google Scholar

[11] J.R. Arthur and A.Y. Cho: Surf. Sci. vol. 36 (1973), p.641–660.

Google Scholar

[12] S.C. Tsang, Y.K. Chen, P.J.F. Harris and L.H. Green: Nature. Vol. 372 -10 (1994), p.159–162.

Google Scholar

[13] S. Banerjee and S.S. Wong: J. Am. Chem. Soc. Vol. 125 (2003), p.10342–10350.

Google Scholar

[14] Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han and L.M. Gan: Langmuir. Vol. 18-10 (2002), p.

Google Scholar

[15] 4054–4060.

Google Scholar

[16] L. Ang, T.S. Andy Hor, G. Xu, C. Tung, S. Zhao and J.L.S. Wang: Chem. Mater. Vol. 11.

Google Scholar

[17] (1999), p.2115–2118.

Google Scholar

[18] M. Menon, A.N. Andriotis and G.E. Froudakis: Chem. Phys. Lett. Vol. 320 (2000), p.425.

Google Scholar

[19] 434.

Google Scholar

[20] P. V. Dudin, M. E. Snowden, J. V. Macpherson andP. R. Unwin: ACS Nano. Vol. 5 (2011), p.

Google Scholar

[21] 10017.

Google Scholar

[22] P. V. Dudin, P. R. Unwin andJ. V. Macpherson: J. Phys. Chem. C. Vol. 114(2010), p.13241.

Google Scholar

[23] B. M. Quinn, C. Dekker andS. G. Lemay: J. Am. Chem. Soc. Vol. 127 (2005), p.6146.

Google Scholar

[24] T. M. Day, P. R. Unwin and J. V. Macpherson: Nano Lett. Vol. 7 (2007), p.51.

Google Scholar

[25] T. Yukawa, K. Kuwabara and K. Koumoto: Thin Solid Films. Vol. 280(1996), pp.160-162.

Google Scholar

[26] A. Dolati, A. Afshar and H. Ghasemi: Mater. Chem. Phys. Vol. 94 (2005), p.23–28.

Google Scholar

[27] T.S.N. Sankara: Met. Finish. Vol. 97 (1999), p.94.

Google Scholar

[28] S.R. Morrison: Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Chap. 5.

Google Scholar

[29] Plenum Press, New York1980).

Google Scholar

[30] Y. Ramprakas, V. Subramanian, R. Krishnakumar, A. S. Lakshmanan and V. K. Venkatesan.

Google Scholar

[31] J. Power Sources. vol. 24 (1988), p.4.

Google Scholar