Synthesis of Spherical LiFePO4/C Composites as Cathode Material of Lithium-Ion Batteries by a Novel Glucose Assisted Hydrothermal Method

Article Preview

Abstract:

The LiFePO4/C composites with different morphology are synthesized by a novel glucose assisted hydrothermal method at various glucose concentrations (from 0 to 0.25mol/L) and the insoluble lithium source Li2CO3, (NH4)2Fe (SO4)2·6H2O and (NH4)2HPO4 (n (Li):n (Fe):n (P)=1:1:1) are used as raw materials. The structure, morphology, thermal performance and electrochemical properties of the synthesized composites are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetry/differential scanning calorimetry (TG-DSC), galvanostatic charge/discharge tests and cyclic voltammetry (CV). The results show that the LiFePO4/C synthesized with 0.125mol/L glucose has the relatively small particles size (0.1~0.5μm) and the well spherical morphology. The optimal sample exhibits a high discharge capacity of 160.0mAh/g at the first cycle and exhibits a good reversibility and stability in CV tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-64

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. J. Electrochem Soc. 144(1997)1188.

Google Scholar

[2] A.S. Andersson, B. Kalska, L. Haggstrom, J.O. Thomas. Solid State Ionics. 41(2000)130.

Google Scholar

[3] L. Laffont, C. Delacourt, P. Gibot, M. Wu, P. Kooyman, C. Masquelier, J. Tarascon. Chem. Mater. 18(2006)520.

Google Scholar

[4] A. Yamada, S.C. Chung, K.J. Hinokuma. Electrochem Soc. 148 (2001) A224.

Google Scholar

[5] G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo. J. Power Sources. 160(2006) 516-522.

DOI: 10.1016/j.jpowsour.2005.12.067

Google Scholar

[6] H.B. Shu, X.Y. Wang, Q. Wu, Q. Q Liang, et al. J. Electrochem Soc. 159(2012) A1904.

Google Scholar

[7] G.C. Liang, L. Wang, X.Q. Ou, X. Zhao, S.Z. Xu. J. Power Sources. 184(2008)538-542.

Google Scholar

[8] S.F. Yang, Y. Peter, M. Stanley. Electrochem. Commun. 3(2001)505-508.

Google Scholar

[9] J.J. Chen, M. Stanley. Electrochem. Commun. 8(2006)855-858.

Google Scholar

[10] S. Keisuke, D. Kaoru, K. Kiyoshi. J. Power Sources. 146(2005)555-558.

Google Scholar

[11] G. Gao, A.F. Liu, Z.H. Hu, Y.Y. Xu, Y.F. Liu. RARE MEtals. 30(2006)433-438.

Google Scholar

[12] A. Vadivel Murugan, T. Muraliganth, A.J. Manthiram. J. Phys. Chem. 112(2008)14665-14671.

Google Scholar

[13] Z. Zhang, X.F. Li, Y.L. Hu, X.C. Huang. Chinese Patent CN102790214A (2012).

Google Scholar

[14] H.B. Shu, X.Y. Wang, Q. Wu, Q.Q. Liang, et al. Electrochimica Acta. 76(2012) 120-129.

Google Scholar

[15] M. Sevilla, A.B. Fuetes. Chem. Eur. J. 15(2009)4195-4203.

Google Scholar

[16] X.J. Cui, M. Antonietti, S.H. Yu. Small. 2(2006)756-759.

Google Scholar

[17] Marta Sevilla and Antonio B. Fuertes. Chem. Eur. J. 15(2009)4195-4203.

Google Scholar

[18] K. Zaghib, J. Shim, A. Guerfi, P. Charest, et al. Electrochem. Solid-state Lett. 8 (2005) A207.

Google Scholar

[19] J.L. Yang, A.F. Jalbout, Y. Xu, R.S. Wang. Electrochem. Solid-state Lett. 11(2008) A115.

Google Scholar