Effects of Excess Bismuth Content on Microstructure and Electric Properties of Europium-Substituted Bismuth Titanate Thin Films

Article Preview

Abstract:

Bi3.25Eu0.75Ti3O12 (BET) thin films with various excess bismuth (Bi) contents (5, 10, 15, 20-mol%) were grown by a metal-organic decomposition method at 700 °C. Effects of excess Bi content on microstructure and electric properties of BET thin films were investigated. BET thin film with 10-mol% excess Bi content shows larger remnant polarization (66.3 C/cm2), better fatigue endurance (3% loss of 2Pr after 1.8×1010 switching cycles), and lower leakage current density (1×10-7 A/cm2) than those of other prepared BET thin films. Additionally, the mechanisms concerning the dependence of the properties on excess Bi content of BET thin films were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-94

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.J. Leng, C.R. Yang, J.H. Zhang, H.W. Chen, J. Appl. Phys. 99 (2006) 114904.

Google Scholar

[2] H.N. Lee, D. Hesse, N. Zakharov, U. Gösele, Science 296 (2002) (2006).

Google Scholar

[3] Y. Wei, H. B. Cheng, X. Y. Wang, and X. J. Zheng, Appl. Phys. Lett. 101 (2012) 231909.

Google Scholar

[4] A.Z. Simoes, A. Ries, B.D. Stojanovic, G. Biasotto, Ceramics International 33 (2007) 1535.

Google Scholar

[5] Z. Zhu, X. J. Zheng, Z. C. Yang, and S. S. Qu, J. Appl. Phys. 113 (2013) 044110.

Google Scholar

[6] M.C. Kao, H.Z. Chen, S.L. Young, Thin Solid Films 528 (2013) 143.

Google Scholar

[7] Y.C. Chang, D.H. Kuo, Thin Solid Films 515 (2006) 1683.

Google Scholar

[8] S.J. Luo, C.B. Wang, S. Zhang, R. Tu , Q. Shen, F. Chen, Materials Letters 79 (2012) 173.

Google Scholar

[9] K.T. Kim, C.I. Kim, D.H. Kang, I.W. Shim, Thin Solid Films 422 (2002) 230.

Google Scholar

[11] X.J. Zheng, L. He, M.H. Tang, Y. Ma, J. B. Wang, Q. M. Wang, Mater. Lett. 62 (2008) 2876.

Google Scholar

[10] X.J. Zheng, L. He, Y.C. Zhou, M.H. Tang, Appl. Phys. Lett. 89 (2006) 252908.

Google Scholar

[12] X.L. Zhong, J.B. Wang, S.X. Yang, Applied Surface Science 253, (2006) 417.

Google Scholar

[13] Y.N. Oh, S.G. Yoon, Applied Surface Science 227 (2004) 187.

Google Scholar

[14] K. Aizawa, E. Tokumitsu, K. Okamoto, Appl. Phys. Lett. 76 (2000) 2609.

Google Scholar

[15] Y.C. Chen, C.P. Hsiung, C.Y. Chen, J.Y. Gan, Thin Solid Films 513 (2006) 331.

Google Scholar

[16] L.A. Knauss, J.M. Pond, J.S. Horwitz, Appl. Phys. Lett. 69 (1996) 25.

Google Scholar

[17] N. Menou, A.M. Castagnos, C. Muller, D. Goguenheim, J. Appl. Phys., 97(2005) 044106.

Google Scholar

[18] S.K. Singh, H. Ishiwara, Solid State Communications 140 (2006) 430.

Google Scholar

[19] K.T. Kim, C.I. Kim, Microelectronic Engineering 71 (2004) 266.

Google Scholar

[20] X.S. Gao, J.M. Xue, J. Wang, J. Appl. Phys. 97 (2005) 034101.

Google Scholar