Microstructure and Mechanical Property of 2.5D C/SiCN Composite

Article Preview

Abstract:

Carbon fiber reinforced silicon carbonitride ceramic composite (C/SiCN) was prepared by rapid electro-thermal pyrolysis chemical vapor deposition using liquid hexamethyldisilazane as precursor. The density of C/SiCN is 1.75g/cm3 and with 15% porosity. Microstructure characteristics of C/SiCN were examined by transmission electron microscopy and scanning electron microscope equipped with energy dispersive spectrometer. The mechanical properties were characterized by three-point bending test. Microstructure observation displays a high degree of coalescence between SiCN matrix and fiber filaments, but there also exist plenty of micro-pores within fiber bundle. It is different from that of C/SiC composite made by chemical vapor infiltration. Mechanical test exhibits a mostly obvious nonlinear fracture behavior, which can be explained by typical toughening mechanism of long fiber-reinforced ceramic matrix composite.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

1499-1502

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H-J. Kleebe, D. Suttor, H. Müller and G. Ziegler, J. Am. Ceram. Soc. 81, (1998) 2971.

Google Scholar

[2] H. Schmidt, G. Borchardt, A. Müller and J. Bill, J. Non-Cryst Solids 341, (2004) 133.

Google Scholar

[3] M.A. Schiavon, G.D. Sorarù and I.V.P. Yoshida, J. Non-Cryst Solids 304, (2002) 76.

Google Scholar

[4] Q. Wang, S. Qiao, Y. Xia, G. Lu and C. Zhang, Carbon-Science and technology 2, (2009) 88.

Google Scholar

[5] SR. Shah and R. Raj, Acta Mater. 50, (2002) 4093.

Google Scholar

[6] L.C. Chen, K.H. Chen, S.L. Wei, P.D. Kichambare, J.J. Wu, T.R. Lu and C.T. Kuo, Thin Solid Films 355-356, (1999) 112.

DOI: 10.1016/s0040-6090(99)00490-3

Google Scholar

[7] A. Zimmermann, A. Bauer, M. Christ, Y. Cai and F. Aldinger. Acta Mater. 50, (2002) 1187.

Google Scholar

[8] L. An, R. Riedel, C. Konetschny, H-J. Kleebe and R. Raj, J. Am. Ceram. Soc. 81, (1998) 1349.

Google Scholar

[9] D. Bahloul, P. Goursat and A. Lavedrine, J. Euro. Ceram. Soc. 11, (1993) 63.

Google Scholar

[10] L. Bharadwaj, Y. Fan, L. Zhang, D. Jiang and L. An, J. Am. Ceram. Soc. 87, (2004), 483.

Google Scholar

[11] L.A. Liew, W. Zhang, V.M. Bright, L. An, M.L. Dunn and R. Raj, Sensors and Actuators A 89, (2001) 64.

Google Scholar

[12] S.S. Lee, L.P. Zawada, J.M. Staehler and C.A. Folsom, J. Am. Ceram. Soc. 81, (1998) 17971.

Google Scholar

[13] K. Sato, H. Morozumi, O. Funayama and T. Isoda. Composites: Part A 30, (1999) 577.

Google Scholar

[14] W.W. Zheng, Z.H. Chen, Q.S. Ma and H.F. Hu. J. Mater. Sci. 39, (2004) 35212.

Google Scholar

[15] S. Qiao, G. Lu, J. Zhong and C. Zhang. P.R. China patent ZL 2006 1 0043034. 4, (2008).

Google Scholar

[16] G. Lu, S. Qiao, C Zhang, J. Hou, D. Jia and Y. Zhang, Composites Part A 39, (2008) 1467.

Google Scholar

[17] Y. Xu, L. Chen and L. Zhang, Carbon 37, (1999) 1179.

Google Scholar

[18] J. Ma, Y. Xu, L. Zhang, L. Cheng, Ji. Nie and H. Li, Mater. Letters 61, (2007) 312-315.

Google Scholar