Influence of Si Content on the Oxide Scale Formation of Ni-Based Alloy

Article Preview

Abstract:

Effects of silicon concentrations in Ni-Cr-based alloys on the formation of oxide scales were examined in reduced atmosphere. The morphology and oxide scale were compared based on the Si content. The formation and growth kinetics of the oxide scale are rather sensitive to the alloy microstructures and their corresponding Si contents. Oxide ridges formed on the eutectic structure preferentially, while a thinner and homogeneous oxide scale grew from the austenite matrix. The thicknesses of the oxide ridges and the oxide layer on the austenite matrix are dependent of their corresponding Si contents. The ridge-like feature indicates that the austenite/carbide phase boundaries offer fast diffusion paths for metal atom outward diffusion. The formation of SiO2 sub-layer at the oxide scale/metal interface can act as an effective diffusion barrier for atom outward diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Pages:

2239-2242

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Y. Lai, High-Temperature Corrosion of Engineering Alloys. (ASM International, Materials Park, OH, 1990), p.15.

Google Scholar

[2] C. M. Chun, T. A. Ramanarayanan, Corrosion Resistance of a High-Silicon Alloy in Metal-Dusting Environments Oxid Met. 67: 215-234(2007).

DOI: 10.1007/s11085-007-9052-3

Google Scholar

[3] M. SCHUTZE, protective Oxide Scales and Their Breakdown. (John Wiley and Sons, Chicheter, UK, 1997).

Google Scholar

[4] N. BIRKS and G. H. MEIER, Introduction to high temperature oxidation of metals. (Edward Arnold, London, UK, 1983).

Google Scholar

[5] Evans HE, Hilton DA, Holm RA, Webster SJ. Oxid Met 1983; 19: 1.

Google Scholar

[6] Park SH, Lee YY, Lee YD, Kim KY. In: Newcomb SB, Little JA, editors. Microscopy of oxidation 3. London: Institute of Materials; (1997).

Google Scholar

[7] G. Bamba, Y. Wouters, A. Galerie, F. Charlot, A. Dellali. Thermal oxidation kinetics and oxide scale adhesion of Fe-15Cr alloys as a function of their silicon content. Acta Materialia, 54: 3917-3922(2006).

DOI: 10.1016/j.actamat.2006.04.023

Google Scholar

[8] I. Svedung, and N. G. Vannerberg, corrosion Science 14: 391(1979).

Google Scholar

[9] A. Naoumidis, H. A. Schulze, W. Jungen, P. Lersch, J. Eur. Cerram. Soc. 7: 55-63(1991).

Google Scholar

[10] J. E. Hammer, S. J. Laney, R. W. Jackson, K. Coyne, F. S. Pettit, G. H. Meier, Oxidation Met. 67: 1-2(2007).

Google Scholar

[11] J. Pan, C. Leygraf, R. F. A. Jargelius Petweaaon and J. Linden, Oxide Met. 50: 431(1998).

Google Scholar

[12] J. Botella, C. Merion and E. Otero, Oxidation of Metals 49: 297(1998).

Google Scholar

[13] Teruhisa Horitaa, Katsuhiko Yamajia, Harumi Yokokawaa, et al. Effects of Si and Al concentrations in Fe-Cr alloy on the formation of oxide scales in H2-H2O, International journal of hydrogen energy, 33: 6308-6315 (2008).

DOI: 10.1016/j.ijhydene.2008.07.118

Google Scholar

[14] T. Ishitsuka, Y. Inoue, and H. Ogawa. Effect of Silicon on the Steam Oxidation Resistance of 9% Cr Heat Resistant Steel. Oxidation of Metals, Vol. 61, Nos. 1/2, February (2004).

DOI: 10.1023/b:oxid.0000016280.81734.3f

Google Scholar

[15] Yu-Ling Yanga, Cheng-Hsien Yanga, Szu-Ning Linb et al. Effects of Si and its content on the scale formation on hot-rolled steel strips. Materials Chemistry and Physics 112: 566-571 (2008).

DOI: 10.1016/j.matchemphys.2008.06.021

Google Scholar

[16] D.R. Gaskell, Introduction to Metallurgical Thermodynamics, 2nd ed., McGraw-Hill, New York, (1981).

Google Scholar

[17] M. Takeda, T. Ohnishi, Y. Mukai, CAMP-ISIJ 16 (2003) 1360.

Google Scholar

[18] P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, New York, 1998, p.534.

Google Scholar

[19] C. Ostwald, H.J. Grabke, Corros. Sci. 46 (2004) 1113-1127.

Google Scholar