[1]
W.H. Fleming, H.M. Sooner, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York, (1992).
Google Scholar
[2]
J.M. Yong, X.Y. Zhou, Stochastic Controls, Hamiltonian Systems and HJB Equations. Springer-Verlag, New York, (1999).
Google Scholar
[3]
W.Q. Zhu, Z.G. Ying, T.T. Soong, An Optimal Nonlinear Feedback Control Strategy for Randomly Excited Structural Systems. Nonlinear Dynamics, (2001), 24: 31-51.
Google Scholar
[4]
O. Elbeyli, J.Q. Sun, Feedback Control Optimization of Nonlinear Systems under Random Excitaions. Nonlinear Science and Numerical simulation, (2005), 11: 125-136.
DOI: 10.1016/j.cnsns.2002.03.001
Google Scholar
[5]
R.H. Huan, M.L. Deng, W.Q. Zhu, Optimal Control Strategies for Stochastically Excited Quasi partially Integrable Hamiltonian Systems, Acta Mechanica Sinica, (2007), 23: 311-319.
DOI: 10.1007/s10409-007-0079-0
Google Scholar
[6]
Li XP, Huan RH, Wei DM, Feedback Minimization of the First-passage Failure of a Hysteretic System under Random Excitations. Probabilistic Engineering Mechanics, 2010, 25: 245-248.
DOI: 10.1016/j.probengmech.2009.12.003
Google Scholar
[7]
J.N. Yang, S. C Liu, Instantaneous Optimal Control with Acceleration and Celocity Feedback. Probabilistic Engineering Mechanics, (1991), 6: 204-211.
DOI: 10.1016/0266-8920(91)90011-r
Google Scholar
[8]
J. Rarantino, J.C. Bruch, J.M. Sloss, Instantaneous Optimal Control of Seismically Excited Structures using a Maximum Principle. Journal of Vibration and Control, (2004), 10: 1099-1121.
DOI: 10.1177/1077546304042749
Google Scholar
[9]
C. Su, R. Xu, Random Vibration Analysis of Structures subjected to Non-stationary Excitations by Time Domain method. Engineering Mechanics, (2010). 77-83.
Google Scholar
[10]
N.M. Newmark, A Method of Computation for Structural Dynamics. Journal of Engineering Mechanics Division. (1959), 85(3): 67-94.
Google Scholar