Fabrication and Characterization of Hydroxyapatite/Poly (L-Lactic Acid-Polycaprolactone Nanofibrous Composite Scaffolds

Article Preview

Abstract:

The multistage aperture nanofibrous composite scaffolds were fabricated by frozen extraction combined with particle leaching from a PLLA/PCL/HA/dioxane/ ethanol ternary system. and then the morphology and biological activity of composite scaffolds were analyzed. Results show that adding the porogen is advantageous to the formation of multistage aperture nanofiber composite scaffolds. And HA adds more conducive to the deposit of CHA on composite scaffolds, raises the biologic activity of the composite scaffold.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

137-140

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends[J]. Macromol. Biosci., 2004, 4(8): 743-765.

DOI: 10.1002/mabi.200400026

Google Scholar

[2] M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobich, J.F. Kay, J. Doremus. HA synthesis and characterisation in dense poly-crystalline form[J]. Mater. Sci. 11 (1976) 2027-(2035).

DOI: 10.1007/pl00020328

Google Scholar

[3] C. Qiu, X. Xiao, R. Liu. Biomimetic synthesis of spherical nano-hydroxyapatite in the presence of polyethylene glycol[J]. Ceramics International, 34 (7) (2008) 1747.

DOI: 10.1016/j.ceramint.2007.06.001

Google Scholar

[4] Mondrinos MJ, Dembzinsky R, Lu L, et al. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffold for tissue engineering[J]. Biomaterials, 2006, 27(25): 4399-4408.

DOI: 10.1016/j.biomaterials.2006.03.049

Google Scholar

[5] Russias J, Saiz E, Nalla RK, et al. Fabrication and mechanical properties of PLA/HA composites: a study of in vitro degradation[J]. Mater. Sci. Eng. C, 2006, 26(8): 1289-1295.

DOI: 10.1016/j.msec.2005.08.004

Google Scholar

[6] Sun JJ, Bae CJ, Koh YH, et al. Fabrication of hydroxyapatite-poly(ε-caprolactone) scaffolds by a combination of the extrusion and bi-axial lamination processes[J]. J. Mater. Sci.: Mater. Med., 2007, 18(6): 1017-1023.

DOI: 10.1007/s10856-007-0155-9

Google Scholar

[7] De Santis P, Kovacs AJ. Molecular Conformation of Poly(S-lactic Acid)[J]. Biopolymers, 1968, 6(3): 299-306.

DOI: 10.1002/bip.1968.360060305

Google Scholar

[8] He LM, Zhang YQ, Zeng X, et al. Fabrication and characterization of poly(L-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid-liquid phase separation from a ternary polymer-solvent system[J]. Polymer, 2009, 50(16): 4128-4138.

DOI: 10.1016/j.polymer.2009.06.025

Google Scholar

[9] Porter JR, Henson A, Popat KC. Biodegradable poly(ε-caprolactone) nanowires for bone tissue engineering applications[J]. Biomaterials, 2009, 30(5): 780-788.

DOI: 10.1016/j.biomaterials.2008.10.022

Google Scholar