High-Security Information Delay Scheme Based on Entangled States and Quantum Teleportation Technology

Article Preview

Abstract:

In this paper we provide a high-capacity information delay scheme based on eantangled states and quantum teleportation technology. By sharing EPR (Einstain-Rosen-Podolsky) pairs, one person can give the other person some information which cannot be read until he or she lets the latter do. By virtue of quantum teleportation technology, no one can gain more information about the key than guessing the key at random. So the scheme can gain high security. The fundamental principles of quantum physics guarantee its unconditional security. When the one decides to let the other get the information, he or she need only to send some dictates through a public classical channel. So the scheme is easier to carry out and more robust in practice.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

1646-1650

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. H. Bennet and G. Brassard: Proceedings of IEEE International conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE Press, 1984, p.175.

Google Scholar

[2] A. K. Ekert: Physical Review Letters, 67, 1991, pp.661-663.

Google Scholar

[3] C. H. Bennett, G. Brassard and N. D. Mermin: Physical Review Letters, 68, 1992, pp.557-559.

Google Scholar

[4] H. K. Lo and H. F. Chau: Science, 283, 1999, p.2050-(2056).

Google Scholar

[5] A. Cabello: Physical Review Letters, 85, 2000, pp.5635-5638.

Google Scholar

[6] P. Xue, C. F. Li and G. C. Guo: Physical Review A, 64, 2001, 032305.

Google Scholar

[7] X. Y. Li: International Journal of Modern Physics C, 14(6), 2003, pp.757-763.

Google Scholar

[8] F. G. Deng and G. L. Long: Physical Review A, 70, 2004, 012311.

Google Scholar

[9] R. Namiki and T. Hirano: Physical Review A, 74, 2006, 032301.

Google Scholar

[10] B. Qi, Y. Zhao, X. F. Ma, H-K. Lo, and L. Qian: Physical Review A, 75, 2007, 052304.

Google Scholar

[11] Y. Adachi, T. Yamamoto, M. Koashi and N. Imoto: Physical Review Letters, 99, 2007, p.180503.

Google Scholar

[12] Z. Q. Yin, Z. F. Han, F. W. Sun and G. C. Guo: Physical Review A, 76, 2007, 014304.

Google Scholar

[13] R. Matsumoto: Physical Review A, 76, 2007, 062316.

Google Scholar

[14] O. Ahonen, M. Mottonen, and J. L. O'Brien: Physical Review A, 78, 2008, 032314.

Google Scholar

[15] Y. Zhao,B. Qi, H-K. Lo: Physical Review A, 77, 2008, 052327.

Google Scholar

[16] T. Choi and M. S. Choi: Journal of Physics: Condensed Matter, 20, 2008, p.275242.

Google Scholar

[17] K. M. Horodecki, P. Horodecki, D. Leung and J. Oppenheim: IEEE Transaction Information Theory, 54(6), 2008, pp.2604-2620.

DOI: 10.1109/tit.2008.921870

Google Scholar

[18] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin: Journal of Cryptology, 5(1) , 1992, pp.3-28.

DOI: 10.1007/bf00191318

Google Scholar

[19] T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka and K, Nakamura: eprints: quant-ph/0403104.

Google Scholar

[20] W. T. Buttler et al.: Physical Review Letters, 81, 1998, pp.3283-3286.

Google Scholar

[21] X. Y. Li, D. X. Zhang: International Conference on Networking and Digital Society, 1, 2009, pp.25-28.

Google Scholar

[22] Y. H. Kim, S. P. Kulik and Y. Shih: Physical Review Letters, 86, 2001, pp.1370-1373.

Google Scholar

[23] C. Cinelli, M. Barbieri, F. De Martini and P. Mataloni: International Journal of Laser Physics, 15(1), 2005, pp.124-128.

Google Scholar

[24] C. H. Bennett et al: Physical Review Letters, 70, 1993, pp.1895-1899.

Google Scholar

[25] D. Bouwmeester et al: Nature, 390, 1997, pp.575-580.

Google Scholar