[1]
Karrer Brian, M .E.J. Newman. Stochastic blockmodels and community structure in networks [J]. Physics Revive. E, 2001 (83) 106-110.
Google Scholar
[2]
Frank Ball, Denis Mollison and S . T . Gianpaolo, Epidemics with two levels of mixing [J]. The Ann of Applied Probability, 1997 (7) 46-66.
Google Scholar
[3]
Frank Ball, Tom Britton, and David Sirl. Household epidemic models with varying infection response [J]. Journal of mathematical biology, 2010 (83) 73-94.
DOI: 10.1007/s00285-010-0372-6
Google Scholar
[4]
Joshua V. Ross, Thomas House, and Matt J. Keeling. Calculation of Disease Dynamics in a Population of Households [J]. PLoS ONE, 2010 (5) e9666.
DOI: 10.1371/journal.pone.0009666
Google Scholar
[5]
D. J. Daley, D.G. Kendall. Stochastic rumours [J]. IMA Journal of Applied Mathematics, 1965 (1) 42.
Google Scholar
[6]
D. J. Daley, J. Gani. Epidemic Modelling. Cambridge University Press: Cambridge, (2000).
Google Scholar
[7]
Daniel P. Maki, Maynard Thompson, Mathematical models and applications. Prentice-Hall: Englewood Cliffs, (1973).
Google Scholar
[8]
P. K. Pollett. Integrals for continuous-time Markov chains[J]. Mat Bio, 2003 (182) 213-225.
DOI: 10.1016/s0025-5564(02)00161-x
Google Scholar
[9]
O. Diekmann, J. A. P. Heesterbeek. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, (2000).
Google Scholar
[10]
J. Black, Thomas. House, M. J. Keeling, J. V. Ross. Epidemiological consequences of household-based antiviral prophylaxis for pandemic influenza[J]. Journal of the Royal Society Interface, 2013 (10) 20121019.
DOI: 10.1098/rsif.2012.1019
Google Scholar