A New Ti-Zr-Cu-Si Amorphous Alloy with Excellent Biocompatibility

Article Preview

Abstract:

A new Ti-based amorphous alloy Ti35Zr21Cu40Si4 with about 80 μm thickness and 5~8 mm width was fabricated by melt spinning method. The phase structure and thermal stabilities of the Ti35Zr21Cu40Si4 amorphous alloy were investigated by the X-ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. The Ti35Zr21Cu40Si4 amorphous alloy was cultivated in the simulate body fluid (SBF) for 15 days. And the blood compatibility was evaluated by dynamic clotting time and hemolysis rate test. The Ti35Zr21Cu40Si4 alloy exhibits fully amorphous phase and high thermal stability with a supercooled liquid region (ΔTx) of 80K. The Ca phosphates depositions on alloy surfaces were gained after 15 days. Moreover, n (Ca)/n (P) atom ratio of the deposition is about 1.65/1, which approaches to that of human bone 1.66/1, suggesting that the Ti35Zr21Cu40Si4 amorphous alloy is with an excellent biocompatibility. The Ti35Zr21Cu40Si4 amorphous ribbon has lower hemolysis ratio of 0.562%, which can reduce wrecking degree of erythrocytes, compared with medical standards of the hemolysis rate (less than 5%). These are favorable for application to biomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

435-439

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.V. Noort, J. Mater. Sci. 22 (1987) 3801-3811.

Google Scholar

[2] M. Niinomi, Matall. Mater. Trans. 33A (2002) 477-486.

Google Scholar

[3] G. He, J. Eckert, Q.L. Dai, M.L. Sui, W. L¨oser, M. Hagiwara, E. Ma, Biomaterials 24 (2003) 5115-5120.

DOI: 10.1016/s0142-9612(03)00440-x

Google Scholar

[4] C.X. Cui, H. Liu, Y.C. Li, J.B. Sun, R. Wang, S.J. Liu, A.L. Greer, Mater. Lett. 59 (2005) 3144-3148.

Google Scholar

[5] S.L. Zhu, X.J. Yang, D.H. Fu, L.Y. Zhang, C.Y. Li, Z.D. Cui, Mater. Sci. Eng. A 408 (2005) 264-268.

Google Scholar

[6] Y.L. Cai, C.Y. Liang, S.L. Zhu, Z.D. Cui, X.J. Yang, Scr. Mater. 54 (2006) 89-92.

Google Scholar

[7] S.L. Zhu, X.M. Wang, F.X. Qin., A. Inoue, Mater. Sci. Eng. A 459 (2007) 233-237.

Google Scholar

[8] J.J. Oaka, A. Inoue, Mater. Sci. Eng. A 449-451 (2007) 220-224.

Google Scholar

[9] S.L. Zhu, X.M. Wang, G.Q. Xie, F.X. Qin, M. Yoshimura, A. Inoue, Scr. Mater. 58 (2008) 287-290.

Google Scholar

[10] L. Bai, C.X. Cui, Q.Z. Wang, S.J. Bu, Y.M. Qi, J. Non-Cryst. Solids 354 (2008) 3935-3938.

Google Scholar

[11] H. Weinans, D.R. Sumner, R. Igloria, R.N. Natarajan, J. Biomech. 33 (2000) 809-817.

Google Scholar

[12] D.A. Armitage, T.L. Parker, D.M. Grant, J. Biomed. Mater. Res. A 66 (2003) 129-137.

Google Scholar

[13] J.X. Liu, D.Z. Yang, F. Shi, Y.J. Cai, Thin Solid Films. 429 (2003) 225-230.

Google Scholar

[14] Y. Li, S.C. Ng, C.K. Ong, H.H. Hng, T.T. Goh, Scripta Mater. 36 (1997) 783-787.

Google Scholar

[15] W.C. Xue, K.B. Vamsi, A. Bandyopadhyay, S. Bose, Acta Biomater. 3 (2007) 1007-1018.

Google Scholar

[16] R.B. Martins, M.W. Chapman, N.A. Sharkey, S.L. Zissimos, B. Bay, E.C. Shors, Biomaterials 14 (1993) 341-348.

DOI: 10.1016/0142-9612(93)90052-4

Google Scholar

[17] S.R. Sousa, M.A. Barbosa, Biomaterials 17 (1996) 397-404.

Google Scholar

[18] J.X. Liu, D.Z. Yang, F. Shi and Y.J. Cai, Thin Solid Film 429 (2003) 225-230.

Google Scholar

[19] T. Hu, C.L. Chu, L.H. Yin, Y.P. Pu, Y.S. Dong, C. Guo, X.B. Sheng, J.C.Y. Chung, P.K. Chu, Trans. Nonferrous Met. Soc. China 17 (2007) 553-557.

DOI: 10.1016/s1003-6326(07)60132-0

Google Scholar

[20] C.C. Tsai, Y. Chang, H.W. Sung, J.C. Hsu and C.N. Chen, Biomaterials, 22 (2001) 523-533.

Google Scholar