A Group Testing-Based Distributed Network Traffic Monitoring Approach for Smart Grid

Article Preview

Abstract:

In this paper, we address the problem of real-time network traffic monitoring in the communication network of smart grid. And we propose an effective distributed network traffic monitoring approach. In our algorithm, instead of measuring all the origin-destination pairs, we just need to measure partial origin-destination pairs that flows our communication network. From the measured origin-destination pairs, we can obtain all the origin-destination pairs via our recovery algorithm. Finally, we validate the properties of our method by real network data.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

892-896

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Niyato and P. Wang, Cooperative transmission for meter data collection in smart grid, IEEE Communications Magzine, 2012, 50(3): 1-4.

DOI: 10.1109/mcom.2012.6178839

Google Scholar

[2] D. Jiang, Z. Xu, H. Xu, et al., An approximation method of origin-destination flow traffic from link load counts, Computers and Electrical Engineering, Nov. 2011, 37(6): 1106-1121.

DOI: 10.1016/j.compeleceng.2011.06.009

Google Scholar

[3] Y. Tarutani, Y. Ohsita, S. Arakawa, et al., Estimation of traffic amounts on all links by using the information from a subset of nodes, " in Proc. of ICENI, 10, pp.18-23, (2010).

Google Scholar

[4] D. Jiang, G. Hu, GARCH model-based large-scale IP traffic matrix estimation, IEEE Communications Letters. 2009, 13(1): 52-54.

DOI: 10.1109/lcomm.2008.081271

Google Scholar

[5] H. Zang and A. Nucci, Traffic monitor deployment in IP networks, Computer Networks, 2009, 53(14): 2491-2501.

DOI: 10.1016/j.comnet.2009.05.004

Google Scholar

[6] G. Liang, N. Taft, and B. Yu, A fast lightweight approach to origin–destination IP traffic estimation using partial measurements, IEEE Transactions on Information Theory, 2006, 52(6): 2634-2648.

DOI: 10.1109/tit.2006.874412

Google Scholar

[7] D. Jiang., Z. Xu, L. Nie, et al., An approximate approach to end-to-end traffic in communication networks, Chinese Journal of Electronics, Oct. 2012, 21(4): 705-710.

Google Scholar

[8] D. Jiang, Z. Xu, Z. Chen, et al., Joint time-frequency sparse estimation of large-scale network traffic, Computer Networks, Oct. 2011, 55(10): 3533-3547.

DOI: 10.1016/j.comnet.2011.06.027

Google Scholar

[9] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, Spatio-temporal compressive sensing and Internet traffic matrices, in Proc. SIGCOMM 2009, 2009, pp.267-278.

DOI: 10.1145/1594977.1592600

Google Scholar

[10] A. Soule, A. Lakhina, N. Taft, et al., Traffic matrices: balancing measurements, inference and modeling, " in Proc. SIGMETRICS, 05, Banff, Canada, (2005).

DOI: 10.1145/1071690.1064259

Google Scholar

[11] R. Dorfman, The detection of defective members of large populations, Annals of Mathematical Statistics, 1943, 14(2): 436-440.

DOI: 10.1214/aoms/1177731363

Google Scholar

[12] M. Cheraghchi, A. Karbasi, S. Mohajer, and V. Saligrama, Graph-constrained group testing, IEEE Transactions on Information Theory, 2012, 58(1): 248-262.

DOI: 10.1109/tit.2011.2169535

Google Scholar

[13] W. Xu, E. Mallada, and A. Tang, Compressive sensing over graph, " in Proc. of INFOCOM, 11, 2011, p.2087-(2095).

Google Scholar