AFM Characterization of Structural Evolution and Roughness of AISI 304 Austenitic Stainless Steel under Severe Deformation by Wavy Rolling

Article Preview

Abstract:

Stainless steels such as ferrritic, austenitic, martensitic and duplex stainless steels are well known for their corrosion resistance to varying extents. Among these, austenitic stainless steels exhibit superior corrosion resistance and better ductility for formability. Therefore, the ability to give simple to intricate shapes in this grade of steel brings their potential for a wide range of applications. However, the meta-stable austenite in AISI 304 is known to undergo a strain induced martensitic (SIM) transformation during conventional rolling at room temperature. This strain induced martensite causes reduction in ductility and limits formability of stainless steel. Therefore, wavy rolling technique was developed to strengthen the stainless steel through microstructural refinement. In the current study, wavy rolling with 1.5 mm amplitude was conducted on 1 mm thick stainless steel sheet to different cycles ranging from 1-4. These rolled samples were characterized by optical and Atomic Force Microscopy (AFM) with resolutions down to the nanolevel. This AFM tool is in a position to bring out the details of grain refinement and topographical roughness emerging from crystalline and microstructural defects like orientation, precipitation, stacking faults, deformation bands, slip lines and shear bands with progress in rolling as referred by the number of rolling cycles here. The structural development is semi-quantitatively related to the degree of deformation and its effect on tensile properties during wavy rolling cycle. Keywords: Structural properties; Roughness; Deformation; Wavy rolling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

230-237

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Estrin, A. Vinogradov, Acta Materialia 61 (2013) 782–817.

Google Scholar

[2] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche , J. Yanagimoto , N. Tsuji, A. Rosochowski, A. Yanagida, CIRP Annals - Manufacturing Technology 57 (2008) 716–735.

DOI: 10.1016/j.cirp.2008.09.005

Google Scholar

[3] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Mater. Sci. Eng. A137 (1991) 35-40.

Google Scholar

[4] V.M. Segal. Mater. Sci. Eng. A 197 (1995) 157-164.

Google Scholar

[5] P.W. Bidgman, J. Appl. Phys 8 (1937) 328-336.

Google Scholar

[6] D. Geist, C. Rentenberger, H.P. Karnthaler, Acta Materialia. 59 (2011) 4578-4586.

DOI: 10.1016/j.actamat.2011.04.003

Google Scholar

[7] S.H. Lee, T. Sakai, Y. Saito, H. Utsunomiya, N. Tsuji, Mater Trans JIM, 40 (1999)1422-1428.

DOI: 10.2320/matertrans1989.40.1422

Google Scholar

[8] O.A. Kaibyshev, J. Mater. Proces. Techn. 117(2001) 300-306.

Google Scholar

[9] D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, Z. Horita, Mater. Sci. Eng. A 519 (2009)105-111.

DOI: 10.1016/j.msea.2009.06.005

Google Scholar

[10] A. Azushima, K. Aoki, Mater. Sci. Eng. A 337 (2002) 45-49.

Google Scholar

[11] Y.T. Zhu, H. Jiang, J. Huang, T. Lowe, Metall. Mater. Trans. 32A (2001)1559-62.

Google Scholar

[12] J.W. Lee J.J. Park, J. Mater. Proc. Techn. 130-131 (2002) 208-213.

Google Scholar

[13] J.Y. Huang, Y.T. Zhu, H. Jiang, T.C. Lowe, Acta Materialia 49 (2001)1497-1505.

Google Scholar

[14] Y. Estrin, M. Janecek, G.I. Raab, R.Z. Valiev, A. Zi, Metall. Mater. Trans., 38A (2007)1906-(1909).

Google Scholar

[15] D. Orlov, G. Raab, T.T. Lamark, M. Popov, Y. Estrin, Acta Materialia 59 (2011) 375-385.

DOI: 10.1016/j.actamat.2010.09.043

Google Scholar

[16] Y. Nishida, H. Arima, J.C. Kim, T. Ando, Scripta Materialia 45 (2001) 261-266.

Google Scholar

[17] G.J. Raab, R.Z. Valiev, T.C. Lowe, Y.T. Zhu, Mater. Sci. Eng. A 382 (2004) 30-34.

Google Scholar

[18] H. Utsunomiya, K. Hatsuda, T. Sakai, Y. Saito, Mater. Sci. Eng. A372 (2004)199-206.

Google Scholar

[19] H. Utsunomiya, Y. Saito, T. Hayashi, T. Sakai, J. Mater. Engg. & Perform. 6 (1997)319-325.

Google Scholar

[20] Y. Saito, H. Utsunomiya, H. Suzuki, T. Sakai, Scripta Materialia 42 (2000)1139-1144.

Google Scholar

[21] Y. Huang, Y.T. Zhu, D.J. Alexander, X.Z. Liao, T.C. Lowe, R.J. Asaro, Mater. Sci. Eng. A 371 (2004) 35-39.

Google Scholar

[22] R. Lapovok, I. Timokhina, P.W.J. McKenzie, R. O'Donnell, J. Mater. Proces. Techn. 200 (2008) 441-450.

Google Scholar

[23] A. Rosochowski, L. Olejnik, Mater. Sci. Forum 674 (2011)19-28.

Google Scholar

[24] P. Groche, D. Vucic, M. Jöckel, J. Mater. Proces. Techn. 183 (2007) 249–255.

Google Scholar

[25] R. Neugebauer, R. Glass, M. Hoffmann, CIRP annals- Manufact. Techn. 54 (2005) 241-244.

Google Scholar

[26] K. Nakamura, K. Neishi, K. Kaneko, M. Nakagaki, Z. Horita, Mater. Trans. 45(2004)3338–42.

Google Scholar

[27] S. Mizunuma, Materials Science Forum 503–504(2005) 185–190.

Google Scholar

[28] D.H. Shin, J.J. Park, Y.S. Kim, K.T. Park, Mater. Sci. Eng. A328 (2002) 98-103.

Google Scholar

[29] J.W. Lee, J.J. Park, J. Mater. Process. Technol. 130 (2002) 208-213.

Google Scholar

[30] K. Chandra Sekhar, B.P. Kashyap, S. Sangal. International conference on rolling and finishing technology of steel (RAFTS-2012) October 4-6, 2012, India.

Google Scholar

[31] A. Krishnaiah, Uday Chakkingal, P. Venugopal. Mater. Sci. Eng. A 410-411 (2005) 337-340.

Google Scholar

[32] K. Peng, Lifeng Su, Leon L. Shaw K.W. Qian, Scripta Materialia 56 (2007) 987-990.

Google Scholar

[33] S.C. Yoon, A. Krishnaiah, U. Chakkingal, H. S. Kim, Comput. Mater. Sci. 43 (2008) 641-645.

Google Scholar

[34] George E. Dieter, Mechanical Metallurgy, McGraw- Hill Book Company pub., pp.114-144.

Google Scholar

[35] Z.Y. Liu, G.X. Liang, E.D. Wang, Z.R. Wang, Materials Science and Engineering A242 (1998) 137–140.

Google Scholar

[36] D. H. Shin, I. Kim, J. Kim, K-T park, Acta materialia 49 (2001)1285-1292.

Google Scholar

[37] V.M. Segal, Mater. Sci. Eng. A338 (2002) 331-344.

Google Scholar

[38] B.P. Kashyap, Acta Materialia 50 (2002) 2413-2427.

Google Scholar

[39] R.T. Bachmann, R.G. J Edyvean, International Biodeterioration and Biodegradation 58 (2006) 112-118.

Google Scholar

[40] K. Chandra Sekhar, B.P. Kashyap, S. Sangal, Advanced Materials Research, Vol. 585 (2012) 67-71.

Google Scholar