[1]
409M – Technical Data. 2004. Detail brochure published by SAIL, India.
Google Scholar
[2]
W.M. Thomas, E.D. Nicholas, J.C. NeedHam M.G. Murch, P.J. Templesmith, Dawes, International Patent PCT/GB92102203, Great Britain Patent 9125978 (1991).
Google Scholar
[3]
Y.S. Sato, T.W. Nelson, C.J. Sterling, Recrystallization in type 304L stainless steel during friction stirring. Acta Mater. 53(3) (2005) 637-645.
DOI: 10.1016/j.actamat.2004.10.017
Google Scholar
[4]
W.M. Thomas, P.L. Threadgill, E.D. Nicholas, Feasibility of friction stir welding steel. Sci. Tech. Weld. Join. 4(6) (1999) 365-372.
DOI: 10.1179/136217199101538012
Google Scholar
[5]
S.H.C. Park, T. Kumagai, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Microstructure and Mechanical Properties of Friction Stir Welded 430 Stainless Steel. Proceedings of The Fifteenth International Offshore and Polar Engineering Conference Seoul, Korea, (2005).
Google Scholar
[6]
6.M. Penasa, C. Rivela, Application of the laser welding process to low thickness stainless steels. Weld. Inter. 17 (2003) 947–957.
DOI: 10.1533/wint.2003.3202
Google Scholar
[7]
7.C.A. Huang, T.H. Wang, W.C. Han, C.H. Lee, A study of the galvanic corrosion behavior of Inconel 718 after electron beam welding. Mater. Chem. Physics. 104: (2007) 293–300.
DOI: 10.1016/j.matchemphys.2007.03.017
Google Scholar
[8]
8. B.S. Yilbas, M. Sami, J. Nickel, A. Coban, S.A.M. Said, Introduction into the electron beam welding of austenitic 321-type stainless steel. J. Mater. Process. Tech. 82 (1998) 13–20.
DOI: 10.1016/s0924-0136(97)00485-8
Google Scholar
[9]
9.M.L. Greef, The influence of welding parameters on the sensitisation behavior of 3CR12. M.S. Thesis, University of Pretoria (2006).
Google Scholar
[10]
10.E. Taban, E. Deleu, A. Dhooge, E. Kaluc, Gas metal arc welding of modified X2CrNi12 ferritic stainless steel. Kovove. Mater. 45 (2007) 67–74.
DOI: 10.1016/j.matdes.2009.04.031
Google Scholar
[11]
11.L.X. Wanga, C.J. Song, F.M. Sun, L.J. Li, Q.J. Zhai, Microstructure and mechanical properties of 12 wt. % Cr ferritic stainless steel with Ti and Nb dual stabilization. Mater. Des. 30 (2009) 49–56.
DOI: 10.1016/j.matdes.2008.04.040
Google Scholar
[12]
12.M. Tullmin, F.P.A. Robinson, C.A.O. Henning, A. Strauss, L.E. Grange, Properties of laser-welded and electron- beam welded ferritic stainless steel. J. South African Institute Min. Metal. 89 (8) (1989) 243-249.
Google Scholar
[13]
13.R. Kaul, P. Ganesh, A.K. Nath, P. Triapthi, R.V. Nandedkar, Comparison of Laser and Gas Tungsten Arc Weldments of Stabilized 17 wt% Cr Ferritic Stainless Steel. Mater. Manuf. Process. 18 (2003) 563–580.
DOI: 10.1081/amp-120022497
Google Scholar
[14]
14.E. Taban, E. Deleu, A. Dhooge, E. Kaluc, Laser welding of modified 12% Cr stainless steel: Strength, fatigue, toughness, microstructure and corrosion properties. Mater. Des. 30 (2009) 1193–1200.
DOI: 10.1016/j.matdes.2008.06.030
Google Scholar
[15]
15. ASTM International Standard E8M – 04. Standard Test Methods for Tension Testing of Metallic Materials. (2004).
Google Scholar
[16]
16. ASTM International Standard E23 – 06. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. (2006).
Google Scholar
[17]
17. ASTM International Standard E467 – 08. Standard Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing System, ASTM International. (2008).
DOI: 10.1520/e0467-98a
Google Scholar
[18]
18. ASTM International Standard E 647 – 05. Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International. (2005).
DOI: 10.1520/stp33449s
Google Scholar
[19]
19.O.H. Basquin, The exponential law of endurance tests. Proceedings of ASTM, 1910; 10: 625–630.
Google Scholar
[20]
20.J. Schijve, Fatigue of Structures and Materials, Kluwer Academic Publishers, NewYork, 2004, pp.141-152.
Google Scholar
[21]
21.G.E. Dieter, Mechanical Metallurgy. 3rd ed., McGraw-Hill, Publishing, New York, 1988, p.376–431.
Google Scholar
[22]
22.P. Paris, F. Erdogan, A critical analysis of crack propagation laws. J. Basic Eng. Trans. ASME (1963) 528–534.
DOI: 10.1115/1.3656902
Google Scholar
[23]
23.B. Guha, A new fracture mechanics method to predict the fatigue life of welded cruciform joints, Engg. Fract. Mecha. 52 (1995) 215-19.
DOI: 10.1016/0013-7944(95)00004-f
Google Scholar
[24]
24.S. Ravi, V. Balasubramanian, S. Nemat Nasser, Effect of notch location on fatigue crack growth behavior of strength-mismatched high-strength low-alloy steel weldments. J. Mater. Engg. Perfor. 13 (2004) 758-65.
DOI: 10.1361/10599490420566
Google Scholar
[25]
25.C.A. Kusko, J.N. DuPont, A.R. Marder, Fatigue Crack Propagation of Stainless Steel Welds, Conf. Proc. Trends in Welding Research, Pine Mountain, GA, ASM International. (2002).
Google Scholar
[26]
26.J.T. Al-haidary, A.A. Wahab, E.H. Abdul Salam, Fatigue Crack Propagation in Austenitic Stainless Steel Weldments. Metal. Mater. Trans. A, 37A (2006) 3205 – 3214.
DOI: 10.1007/bf02586155
Google Scholar
[27]
27.S.R. Mediratta, V. Ramaswamy, P. Rama Rao, Influence of ferrite- martensite microstructural morphology on the low cycle fatigue of a dual-phase steel, Int. J. Fatigue 7(2) (1985) 107-115.
DOI: 10.1016/0142-1123(85)90041-6
Google Scholar
[28]
28.A. Bayram, A.U. Uz, M. Ula, Effects of microstructure and notches on the mechanical properties of dual-phase steels, Mater. Charac. 43 (1999) 259-269.
DOI: 10.1016/s1044-5803(99)00044-3
Google Scholar
[29]
29.K.V. Sudhakar, E.S. Dwarakadasa, A study on fatigue crack growth in dual phase martensitic steel in air environment, Bulletin Mater. Sci. 23(3) (2000) 193-199.
DOI: 10.1007/bf02719909
Google Scholar
[30]
30.Z.G. Wang, S.H. Al, Fatigue of martensite–ferrite high strength low-alloy dual phase, Iron Steel Res. Ins. Japan. 39(8) 1999 747-59.
DOI: 10.2355/isijinternational.39.747
Google Scholar
[31]
31.R.Y. Deng, Z.J. Ye, Fatigue crack growth rate in ferrite-martensite dual- phase steel. Theo. App. Fracl Mech. 16 (1991)109-122.
DOI: 10.1016/0167-8442(91)90028-i
Google Scholar
[32]
32.C. Jang, P.Y. Cho, M. Kim, S.J. Oh, J.S. Yang, Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds. Mater. Des. 31 (2010) 1862–1870.
DOI: 10.1016/j.matdes.2009.10.062
Google Scholar
[33]
33.M. Okayasu, K. Sato, M. Mizuno, D.Y. Hwang, D.H. Shin, Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel. Int. J. Fat. 30 (2008) 1358–65.
DOI: 10.1016/j.ijfatigue.2007.10.011
Google Scholar
[34]
34.M. Tayanc, A. Aytac, A. Bayram, The effect of carbon content on fatigue strength of dual- phase steels. Mater. Des. 28(6) (2007)1827-35.
Google Scholar
[35]
35.J.O. Sperle, Fatigue strength of high strength dual phase steel sheet. Int. J. Fatigue 7 (1985) 79-86.
DOI: 10.1016/0142-1123(85)90037-4
Google Scholar
[36]
36.K. Makhlouf, J.W. Jones, Near-threshold fatigue crack growth behavior of a ferritic stainless steel at elevated temperatures. Int. J. Fatigue. 14 (1992) 97-104.
DOI: 10.1016/0142-1123(92)90085-q
Google Scholar
[37]
37.C.A. Kusko, J.N. DuPont, A.R. Marder, The Influence of Microstructure on Fatigue Crack Propagation Behavior of Stainless Steel Welds. Weld. Res. Supple., (2004) 6- 15.
Google Scholar
[38]
38.L. Lawson, E.Y. Chen, M. Meshi, Near-threshold fatigue: a review, International J. Fatigue. 21 (1991) 15-34.
Google Scholar
[39]
39.M. Kocak, Structural Integrity of Welded Structures: Process - Property – Performance (3P) Relationship, 63rd Annual Assembly & International Conference of the International Institute of Welding 11-17 July 2010, Istanbul, Turkey , (2010).
Google Scholar
[40]
40.H. Suzuki, A.J.E. Mcevily, Microstructural effects on fatigue crack growth in a low carbon steel, Metal. Trans. A- Physical Metallurgy 10A (1979) 475- 481.
DOI: 10.1007/bf02697075
Google Scholar
[41]
41.K. Nakajima, T. Urabe, Y. Hosoya. S. Kamiishi, T. Miyata, N. Takeda, Influence of microstructural morphology and prestraining on short fatigue crack propagation in dual-phase steels. Iron Steel Res. Inst. Japan 41(3) (2001) 298–304.
DOI: 10.2355/isijinternational.41.298
Google Scholar
[42]
42.N.B. Potluri, P.K. Ghosh, P.C. Gupta, Y.S. Reddy, Studies on weld metal characteristics and their influences on tensile and fatigue properties of pulsed current GMA welded Al-Zn-Mg alloy. Weld. Res. Supp. (1996) pp. s62-s70.
DOI: 10.1016/s0142-1123(97)87830-9
Google Scholar
[43]
43.H. Zhang, Y. Zhang, L. Li, X. Ma, Influence of weld mis-matching on fatigue crack growth behaviors of electron beam welded joints. Mater. Sci. Engg. A 334 (2002) 141-146.
DOI: 10.1016/s0921-5093(01)01785-3
Google Scholar
[44]
44.S.J. Maddox, Fatigue Strength of Welded Structures. Cambridge University Press, London, 1991, pp.170-175.
Google Scholar
[45]
45.R.S. Parmar, Welding Processes and Technology. Khanna Publishers, New Delhi, 2003, pp.213-214.
Google Scholar
[46]
46.O. Hatamleh, I.V. Rivero, A Maredia, Residual Stresses in Friction-Stir- Welded 2195 and 7075 Aluminum Alloys Metal. Mater. Trans. 39A (2008) 2867-2874.
DOI: 10.1007/s11661-008-9657-4
Google Scholar
[47]
47.M.T. Milan, W.W. Bose filho, C.O.F.T. Ruckert, J.R. Tarpani, Fatigue behaviour of friction stir welded AA2024-T3 alloy: longitudinal and transverse crack growth, Fatigue Fract. Engg. Mater. Struct. 31 (2008) 526-538.
DOI: 10.1111/j.1460-2695.2008.01234.x
Google Scholar
[48]
48.P.S. Pao, E. Lee, C.R. Feng, H.N. Jones, D.W. Moon, In: Proceedings of the 4th Int. sym. friction stir weld. Park City, (2003).
Google Scholar
[49]
49.R. John, K.V. Jata, K. Sadananda, Residual stress effects on near- threshold fatigue crack growth in friction stir welds in aerospace alloys. Int. J. Fatigue. 25 (2003) 939–948.
DOI: 10.1016/j.ijfatigue.2003.08.002
Google Scholar
[50]
50.G. Bussu, G, P. E Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. Int. J. Fatigue. 25 (2003) 77–88.
DOI: 10.1016/s0142-1123(02)00038-5
Google Scholar
[51]
51.A.P. Reynolds, T. Wei Tang, G.H. Prask, Structure, properties, and residual stress of 304L stainless steel friction stir welds. Scripta Materialia 48 (2003) 1289-1294.
DOI: 10.1016/s1359-6462(03)00024-1
Google Scholar