Effect of Welding Processes on Fatigue Behaviour of AISI 409M Grade Ferritic Stainless Steel Joints

Article Preview

Abstract:

The present investigation is aimed at to study the effect of four welding processes namely friction stir welding, gas tungsten arc welding, laser beam welding and electron beam welding on fatigue behavior of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. The fatigue life and fatigue crack growth behavior were evaluated using hourglass and centre cracked tension (CCT) specimens respectively. A 100 kN servo hydraulic controlled fatigue testing machine was used under constant amplitude uniaxial tensile load with stress ratio of 0.1 and frequency of 15 Hz. Fatigue properties are correlated with the tensile, impact toughness, micro hardness, microstructure, fracture surface morphology and residual stress of the welded joints. It is found that the joint fabricated by friction stir welding process showed superior fatigue life and fatigue crack growth resistance compared to other joints. This is mainly due to the synergetic effect of dual phase ferritic-martensitic microstructure, superior tensile properties and favorable residual stress, which inhibit the growth of cracks compared to other joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-412

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] 409M – Technical Data. 2004. Detail brochure published by SAIL, India.

Google Scholar

[2] W.M. Thomas, E.D. Nicholas, J.C. NeedHam M.G. Murch, P.J. Templesmith, Dawes, International Patent PCT/GB92102203, Great Britain Patent 9125978 (1991).

Google Scholar

[3] Y.S. Sato, T.W. Nelson, C.J. Sterling, Recrystallization in type 304L stainless steel during friction stirring. Acta Mater. 53(3) (2005) 637-645.

DOI: 10.1016/j.actamat.2004.10.017

Google Scholar

[4] W.M. Thomas, P.L. Threadgill, E.D. Nicholas, Feasibility of friction stir welding steel. Sci. Tech. Weld. Join. 4(6) (1999) 365-372.

DOI: 10.1179/136217199101538012

Google Scholar

[5] S.H.C. Park, T. Kumagai, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Microstructure and Mechanical Properties of Friction Stir Welded 430 Stainless Steel. Proceedings of The Fifteenth International Offshore and Polar Engineering Conference Seoul, Korea, (2005).

Google Scholar

[6] 6.M. Penasa, C. Rivela, Application of the laser welding process to low thickness stainless steels. Weld. Inter. 17 (2003) 947–957.

DOI: 10.1533/wint.2003.3202

Google Scholar

[7] 7.C.A. Huang, T.H. Wang, W.C. Han, C.H. Lee, A study of the galvanic corrosion behavior of Inconel 718 after electron beam welding. Mater. Chem. Physics. 104: (2007) 293–300.

DOI: 10.1016/j.matchemphys.2007.03.017

Google Scholar

[8] 8. B.S. Yilbas, M. Sami, J. Nickel, A. Coban, S.A.M. Said, Introduction into the electron beam welding of austenitic 321-type stainless steel. J. Mater. Process. Tech. 82 (1998) 13–20.

DOI: 10.1016/s0924-0136(97)00485-8

Google Scholar

[9] 9.M.L. Greef, The influence of welding parameters on the sensitisation behavior of 3CR12. M.S. Thesis, University of Pretoria (2006).

Google Scholar

[10] 10.E. Taban, E. Deleu, A. Dhooge, E. Kaluc, Gas metal arc welding of modified X2CrNi12 ferritic stainless steel. Kovove. Mater. 45 (2007) 67–74.

DOI: 10.1016/j.matdes.2009.04.031

Google Scholar

[11] 11.L.X. Wanga, C.J. Song, F.M. Sun, L.J. Li, Q.J. Zhai, Microstructure and mechanical properties of 12 wt. % Cr ferritic stainless steel with Ti and Nb dual stabilization. Mater. Des. 30 (2009) 49–56.

DOI: 10.1016/j.matdes.2008.04.040

Google Scholar

[12] 12.M. Tullmin, F.P.A. Robinson, C.A.O. Henning, A. Strauss, L.E. Grange, Properties of laser-welded and electron- beam welded ferritic stainless steel. J. South African Institute Min. Metal. 89 (8) (1989) 243-249.

Google Scholar

[13] 13.R. Kaul, P. Ganesh, A.K. Nath, P. Triapthi, R.V. Nandedkar, Comparison of Laser and Gas Tungsten Arc Weldments of Stabilized 17 wt% Cr Ferritic Stainless Steel. Mater. Manuf. Process. 18 (2003) 563–580.

DOI: 10.1081/amp-120022497

Google Scholar

[14] 14.E. Taban, E. Deleu, A. Dhooge, E. Kaluc, Laser welding of modified 12% Cr stainless steel: Strength, fatigue, toughness, microstructure and corrosion properties. Mater. Des. 30 (2009) 1193–1200.

DOI: 10.1016/j.matdes.2008.06.030

Google Scholar

[15] 15. ASTM International Standard E8M – 04. Standard Test Methods for Tension Testing of Metallic Materials. (2004).

Google Scholar

[16] 16. ASTM International Standard E23 – 06. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. (2006).

Google Scholar

[17] 17. ASTM International Standard E467 – 08. Standard Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing System, ASTM International. (2008).

DOI: 10.1520/e0467-98a

Google Scholar

[18] 18. ASTM International Standard E 647 – 05. Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International. (2005).

DOI: 10.1520/stp33449s

Google Scholar

[19] 19.O.H. Basquin, The exponential law of endurance tests. Proceedings of ASTM, 1910; 10: 625–630.

Google Scholar

[20] 20.J. Schijve, Fatigue of Structures and Materials, Kluwer Academic Publishers, NewYork, 2004, pp.141-152.

Google Scholar

[21] 21.G.E. Dieter, Mechanical Metallurgy. 3rd ed., McGraw-Hill, Publishing, New York, 1988, p.376–431.

Google Scholar

[22] 22.P. Paris, F. Erdogan, A critical analysis of crack propagation laws. J. Basic Eng. Trans. ASME (1963) 528–534.

DOI: 10.1115/1.3656902

Google Scholar

[23] 23.B. Guha, A new fracture mechanics method to predict the fatigue life of welded cruciform joints, Engg. Fract. Mecha. 52 (1995) 215-19.

DOI: 10.1016/0013-7944(95)00004-f

Google Scholar

[24] 24.S. Ravi, V. Balasubramanian, S. Nemat Nasser, Effect of notch location on fatigue crack growth behavior of strength-mismatched high-strength low-alloy steel weldments. J. Mater. Engg. Perfor. 13 (2004) 758-65.

DOI: 10.1361/10599490420566

Google Scholar

[25] 25.C.A. Kusko, J.N. DuPont, A.R. Marder, Fatigue Crack Propagation of Stainless Steel Welds, Conf. Proc. Trends in Welding Research, Pine Mountain, GA, ASM International. (2002).

Google Scholar

[26] 26.J.T. Al-haidary, A.A. Wahab, E.H. Abdul Salam, Fatigue Crack Propagation in Austenitic Stainless Steel Weldments. Metal. Mater. Trans. A, 37A (2006) 3205 – 3214.

DOI: 10.1007/bf02586155

Google Scholar

[27] 27.S.R. Mediratta, V. Ramaswamy, P. Rama Rao, Influence of ferrite- martensite microstructural morphology on the low cycle fatigue of a dual-phase steel, Int. J. Fatigue 7(2) (1985) 107-115.

DOI: 10.1016/0142-1123(85)90041-6

Google Scholar

[28] 28.A. Bayram, A.U. Uz, M. Ula, Effects of microstructure and notches on the mechanical properties of dual-phase steels, Mater. Charac. 43 (1999) 259-269.

DOI: 10.1016/s1044-5803(99)00044-3

Google Scholar

[29] 29.K.V. Sudhakar, E.S. Dwarakadasa, A study on fatigue crack growth in dual phase martensitic steel in air environment, Bulletin Mater. Sci. 23(3) (2000) 193-199.

DOI: 10.1007/bf02719909

Google Scholar

[30] 30.Z.G. Wang, S.H. Al, Fatigue of martensite–ferrite high strength low-alloy dual phase, Iron Steel Res. Ins. Japan. 39(8) 1999 747-59.

DOI: 10.2355/isijinternational.39.747

Google Scholar

[31] 31.R.Y. Deng, Z.J. Ye, Fatigue crack growth rate in ferrite-martensite dual- phase steel. Theo. App. Fracl Mech. 16 (1991)109-122.

DOI: 10.1016/0167-8442(91)90028-i

Google Scholar

[32] 32.C. Jang, P.Y. Cho, M. Kim, S.J. Oh, J.S. Yang, Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds. Mater. Des. 31 (2010) 1862–1870.

DOI: 10.1016/j.matdes.2009.10.062

Google Scholar

[33] 33.M. Okayasu, K. Sato, M. Mizuno, D.Y. Hwang, D.H. Shin, Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel. Int. J. Fat. 30 (2008) 1358–65.

DOI: 10.1016/j.ijfatigue.2007.10.011

Google Scholar

[34] 34.M. Tayanc, A. Aytac, A. Bayram, The effect of carbon content on fatigue strength of dual- phase steels. Mater. Des. 28(6) (2007)1827-35.

Google Scholar

[35] 35.J.O. Sperle, Fatigue strength of high strength dual phase steel sheet. Int. J. Fatigue 7 (1985) 79-86.

DOI: 10.1016/0142-1123(85)90037-4

Google Scholar

[36] 36.K. Makhlouf, J.W. Jones, Near-threshold fatigue crack growth behavior of a ferritic stainless steel at elevated temperatures. Int. J. Fatigue. 14 (1992) 97-104.

DOI: 10.1016/0142-1123(92)90085-q

Google Scholar

[37] 37.C.A. Kusko, J.N. DuPont, A.R. Marder, The Influence of Microstructure on Fatigue Crack Propagation Behavior of Stainless Steel Welds. Weld. Res. Supple., (2004) 6- 15.

Google Scholar

[38] 38.L. Lawson, E.Y. Chen, M. Meshi, Near-threshold fatigue: a review, International J. Fatigue. 21 (1991) 15-34.

Google Scholar

[39] 39.M. Kocak, Structural Integrity of Welded Structures: Process - Property – Performance (3P) Relationship, 63rd Annual Assembly & International Conference of the International Institute of Welding 11-17 July 2010, Istanbul, Turkey , (2010).

Google Scholar

[40] 40.H. Suzuki, A.J.E. Mcevily, Microstructural effects on fatigue crack growth in a low carbon steel, Metal. Trans. A- Physical Metallurgy 10A (1979) 475- 481.

DOI: 10.1007/bf02697075

Google Scholar

[41] 41.K. Nakajima, T. Urabe, Y. Hosoya. S. Kamiishi, T. Miyata, N. Takeda, Influence of microstructural morphology and prestraining on short fatigue crack propagation in dual-phase steels. Iron Steel Res. Inst. Japan 41(3) (2001) 298–304.

DOI: 10.2355/isijinternational.41.298

Google Scholar

[42] 42.N.B. Potluri, P.K. Ghosh, P.C. Gupta, Y.S. Reddy, Studies on weld metal characteristics and their influences on tensile and fatigue properties of pulsed current GMA welded Al-Zn-Mg alloy. Weld. Res. Supp. (1996) pp. s62-s70.

DOI: 10.1016/s0142-1123(97)87830-9

Google Scholar

[43] 43.H. Zhang, Y. Zhang, L. Li, X. Ma, Influence of weld mis-matching on fatigue crack growth behaviors of electron beam welded joints. Mater. Sci. Engg. A 334 (2002) 141-146.

DOI: 10.1016/s0921-5093(01)01785-3

Google Scholar

[44] 44.S.J. Maddox, Fatigue Strength of Welded Structures. Cambridge University Press, London, 1991, pp.170-175.

Google Scholar

[45] 45.R.S. Parmar, Welding Processes and Technology. Khanna Publishers, New Delhi, 2003, pp.213-214.

Google Scholar

[46] 46.O. Hatamleh, I.V. Rivero, A Maredia, Residual Stresses in Friction-Stir- Welded 2195 and 7075 Aluminum Alloys Metal. Mater. Trans. 39A (2008) 2867-2874.

DOI: 10.1007/s11661-008-9657-4

Google Scholar

[47] 47.M.T. Milan, W.W. Bose filho, C.O.F.T. Ruckert, J.R. Tarpani, Fatigue behaviour of friction stir welded AA2024-T3 alloy: longitudinal and transverse crack growth, Fatigue Fract. Engg. Mater. Struct. 31 (2008) 526-538.

DOI: 10.1111/j.1460-2695.2008.01234.x

Google Scholar

[48] 48.P.S. Pao, E. Lee, C.R. Feng, H.N. Jones, D.W. Moon, In: Proceedings of the 4th Int. sym. friction stir weld. Park City, (2003).

Google Scholar

[49] 49.R. John, K.V. Jata, K. Sadananda, Residual stress effects on near- threshold fatigue crack growth in friction stir welds in aerospace alloys. Int. J. Fatigue. 25 (2003) 939–948.

DOI: 10.1016/j.ijfatigue.2003.08.002

Google Scholar

[50] 50.G. Bussu, G, P. E Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. Int. J. Fatigue. 25 (2003) 77–88.

DOI: 10.1016/s0142-1123(02)00038-5

Google Scholar

[51] 51.A.P. Reynolds, T. Wei Tang, G.H. Prask, Structure, properties, and residual stress of 304L stainless steel friction stir welds. Scripta Materialia 48 (2003) 1289-1294.

DOI: 10.1016/s1359-6462(03)00024-1

Google Scholar