[1]
A. Das, S. Tarafder, Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel, Int. J. Plasticity. 25 (2009) 2222–2247.
DOI: 10.1016/j.ijplas.2009.03.003
Google Scholar
[2]
H. Roy, A. Ray, K. Barat, C. Hochmuth, S. Sivaprasad, S. Tarafder, U. Glatzel, K.K. Ray, Structural variations ahead of a crack tip during monotonic and cyclic fracture tests of AISI 304 LN stainless steel, Mater. Sci. Eng. A. 561 (2013) 88-89.
DOI: 10.1016/j.msea.2012.10.074
Google Scholar
[3]
H. Roy, S. Sivaprasad, S. Tarafder, K.K. Ray, Monotonic vis-à-vis cyclic fracture behaviour of AISI 304LN stainless steel, Eng. Fract. Mech. 76 (2009) 1822–1832.
DOI: 10.1016/j.engfracmech.2009.04.001
Google Scholar
[4]
S. Ghosh, V. Kain, A. Ray, H. Roy, S. Sivaprasad, S. Tarafder, K.K. Ray, Deterioration in fracture toughness of 304LN austenitic stainless steel due to sensitization, Metall. Mater. Trans. A. 40A (2009) 2938-2949.
DOI: 10.1007/s11661-009-0023-y
Google Scholar
[5]
A. Das, S. Sivaprasad, P.C. Chakraborti, S. Tarafder, Morphologies and characteristics of deformation induced martensite during low cycle fatigue behaviour of austenitic stainless steel, Mater. Sci. Eng. A. 528 (2011) 7909–7914.
DOI: 10.1016/j.msea.2011.07.011
Google Scholar
[6]
S. Biswas, S. Sivaprasad, N. Narasaiah, S. Tarafder, P.C. Chakraborti, Load history effect on FCGR behaviour of 304LN stainless steel, Int. J. Fatigue. 29 (2007) 786–791.
DOI: 10.1016/j.ijfatigue.2006.06.003
Google Scholar
[7]
K. Dutta, S. Sivaprasad, S. Tarafder, K.K. Ray, Influence of asymmetric cyclic loading on substructure formation and ratcheting fatigue behaviour of AISI 304LN stainless steel, Mater. Sci. Eng. A. 527 (2010) 7571–7579.
DOI: 10.1016/j.msea.2010.07.107
Google Scholar
[8]
A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, S. Tarafder, Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel, Mater. Sci. Eng. A. 486 (2008) 283–286.
DOI: 10.1016/j.msea.2007.09.005
Google Scholar
[9]
U. Krupp, C. West, H.J. Christ, Deformation-induced martensite formation during cyclic deformation of metastable austenitic steel: Influence of temperature and carbon content, Mater. Sci. Eng A. 481-482 (2008) 713–717.
DOI: 10.1016/j.msea.2006.12.211
Google Scholar
[10]
E. Nagy, V. Mertinger, F. Tranta, J. Sólyom, Deformation induced martensitic transformation in stainless steels, Mater. Sci. Eng. A. 378 (2004) 308-313.
DOI: 10.1016/j.msea.2003.11.074
Google Scholar
[11]
A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, D.K. Matlock, Quantitative measurement of deformation-induced martensitein 304 stainless steel by X-ray diffraction, Scripta. Mater. 50 (2004) 1445-1449.
DOI: 10.1016/j.scriptamat.2004.03.011
Google Scholar
[12]
L.E. Murr, K.P. Staudhammer, S.S. Hecker, Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II. Microstructural study, Metall. Trans. A. 13 (1982) 627–635.
DOI: 10.1007/bf02644428
Google Scholar
[13]
S.S. Hecker, M.G. Stout, K.P. Staudhammer, J.L. Smith, Effect of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part I. Magnetic measurement and mechanical behaviour, Metall. Trans. A. 13 (1982).
DOI: 10.1007/bf02644427
Google Scholar
[14]
G.L. Huang, D.K. Matlock, G. Krauss, Martensite formation, strain rate sensitivity, and deformation behaviour of type 304 stainless steel sheet, Metall. Trans. A. 20 (1989) 1239–1246.
DOI: 10.1007/bf02647406
Google Scholar
[15]
V. Shrinivas, S.K. Varma, L. Murr, Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling, Metall. Mater. Trans. A. 26 (1995) 661–671.
DOI: 10.1007/bf02663916
Google Scholar
[16]
J. Talonen, Effect of strain-induced -martensite transformation on mechanical properties of metastable austenitic stainless steels, Doctoral Dissertation, Helsinki University of Technology, Finland (2007).
Google Scholar
[17]
J.W. Brooks, M.H. Loretto, R.E. Smallman, Direct observations of martensite nuclei in stainless steel, Acta. Metall. 27 (1979) 1839–1847.
DOI: 10.1016/0001-6160(79)90074-9
Google Scholar
[18]
J.Y. Choi, W. Jin, Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels, Scripta. Mater. 36 (1997) 99-104.
DOI: 10.1016/s1359-6462(96)00338-7
Google Scholar
[19]
W.S. Lee, C.F. Lin, Impact properties and microstructure evolution of 304L stainless steel, Mater. Sci. Eng. A. 308 (2001) 124-135.
Google Scholar
[20]
K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, Y. Bréchet, Strengthening via the formation of strain-induced martensite in stainless steels, Mat. Sci. Eng. A. 387–389 (2004) 873–881.
DOI: 10.1016/j.msea.2003.11.084
Google Scholar
[21]
Z. Mei, J.W. Morris, Influence of deformation induced martensite on fatigue crack propagation in 304 type steels, Metall. Trans. A. 21 (1990) 3137–3152.
DOI: 10.1007/bf02647310
Google Scholar
[22]
G.B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metall. Trans. A. 6A (1975) 791-795.
DOI: 10.1007/bf02672301
Google Scholar
[23]
J. Talonen, H. Hanninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Mater. 55 (2007) 6108–6118.
DOI: 10.1016/j.actamat.2007.07.015
Google Scholar
[24]
H. Hallberg, L. Banks-Sills, M. Ristinmaa, Crack tip transformation zones in austenitic stainless steel, Engg. Fract. Mech. 79 (2012) 266-280.
DOI: 10.1016/j.engfracmech.2011.11.004
Google Scholar
[25]
K. Barat, Fractal characterization of fractured surfaces, M. Tech Dissertation, IIT Kharagpur, India, (2010).
Google Scholar
[26]
H. Roy, Monotonic and cyclic fracture behaviour of AISI 304LN stainless steel, Doctoral Dissertation, IIT Kharagpur, India, (2011).
Google Scholar
[27]
T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, S. Koike, M. Ichihara, An experimental study of the martensite nucleation and growth in 18/8 stainless steel, Acta. Metall. 25 (1977) 1151–1162.
DOI: 10.1016/0001-6160(77)90202-4
Google Scholar
[28]
P.K. Singh, V.R. Ranganath, S. Tarafder, P. Prasad, V. Bhasin, K.K. Vaze, H.S. Khuswaha, Effect of cyclic loading on elastic–plastic fracture resistance of PHT system piping material of PHWR, Int. J. Pressure Vessels Piping. 80 (2003) 745–752.
DOI: 10.1016/s0308-0161(03)00133-9
Google Scholar
[29]
H. Kobayashi, T. Kusumoto, H. Nakazawa, The Cyclic J-R Curve and Upper-Limit Characteristic of Fatigue-Crack Growth in 221 Cr-Mo Steel, Int. J. Pressure Vessels Piping. 52 (1992) 337–356.
DOI: 10.1016/0308-0161(92)90090-3
Google Scholar
[30]
S. Kundu, H.K.D.S. Bhadeshia, Transformation texture in deformed steels, Scripta. Mater. 55 (2006) 779-781.
DOI: 10.1016/j.scriptamat.2006.07.021
Google Scholar
[31]
M. Grosse, D Kalkhof, M. Niffenegger, L Keller, Influencing parameters on martensite transformation during low cycle fatigue for steel AISI 321, Mater. Sci. Eng. A. 437 (2006) 109-113.
DOI: 10.1016/j.msea.2006.04.077
Google Scholar
[32]
S.G.S. Raman, K.A. Padmanabhan, A comparision of the room-temperature behaviour of AISI 304LN stainless steel and nimonic 90 under strain cycling, Int. J. Fatigue. 17 (1995) 271-277.
DOI: 10.1016/0142-1123(95)93539-e
Google Scholar
[33]
G.R. Lehnhoff, K.O. Findley, Influence of austenite stability on predicted cyclic stress-strainresponse of metastable austenitic steels, Procedia Eng. 10 (2011) 104-117.
DOI: 10.1016/j.proeng.2011.04.181
Google Scholar
[34]
D. Ye, S. Matsuoka, N. Nagashima, N. Suzuki, The low-cycle fatigue, deformation and final fracture behaviour of an austenitic stainless steel, Mater. Sci. Eng.A. 415 (2006) 104-117.
DOI: 10.1016/j.msea.2005.09.081
Google Scholar
[35]
S.K. Paul, Experimentation and Material Modelling for Cyclic Plastic Deformation Behaviour in Primary Heat Transport Piping (PHT) Materials, Doctoral Dissertation, Jadavpur University, Kolkata, India, (2012).
Google Scholar
[36]
. ] G.J. Kang, Y.G. Li, J. Zhang, Y.F. Sun, Q. Gao, Uniaxial ratcheting and failure behaviors of two steels, Theor. Appl. Fract. Mec. 43 (2005) 199–209.
DOI: 10.1016/j.tafmec.2005.01.005
Google Scholar
[37]
C. Gupta, J.K. Chakravartty, G.R. Reddy, S. Banerjee, Uniaxial cyclic deformation behaviour of SA 333 Gr 6 piping steel at room temperature, Int. J. Pres. Ves. Pip. 82 (2005) 459–469.
DOI: 10.1016/j.ijpvp.2005.01.005
Google Scholar
[38]
L.W. Tsay, S.C. Yu, R. T. Huang, Effect of austenite instability on the hydrogen-enhanced crack growth of austenitic stainless steels, Corrosion Science, 49 (2007) 2973–2984.
DOI: 10.1016/j.corsci.2007.01.008
Google Scholar