Deformation Fatigue and Fracture vis-a-vis Deformation Induced Martensite in AISI 304LN Stainless Steel

Article Preview

Abstract:

Understanding of deformation, fracture or fatigue behaviour of AISI 304LN grade stainless steel with reference to in-situ evolution of deformation induced martensite (DIM) is important for the structural integrity of numerous critical engineering components made of this steel. The primary objective of this report is to present a concise overview on the state-of-the-art of these aspects based on a series of investigations by the authors and their co-workers through over more than a decade. The major experiments involved are determination of tensile, fatigue and fracture behaviour of the steel using standard testing procedures. The associated structural and sub-structural changes in the deformation volume or at local regions such as fracture surfaces or crack tips are characterized. The nature and amount of DIM have been detected through microstructural analysis, X-ray diffraction, hardness measurement, ferrofluid based technique, ferritoscope assessment and TEM, in addition to extensive fractographic analysis by SEM. The major highlights of the investigations centre on revelations of the role of DIM on tensile deformation of 304LN stainless steel at various strain rates and temperatures, illustrating the association of DIM with constrained and unconstrained deformation ahead of crack tips in monotonic and cyclic fracture tests, and examination of the extent of DIM transformation during stress controlled and strain controlled cyclic loading and fatigue crack growth, with an underlying theme of continuously emphasizing the nature, location and amount of DIM formed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

415-428

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Das, S. Tarafder, Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel, Int. J. Plasticity. 25 (2009) 2222–2247.

DOI: 10.1016/j.ijplas.2009.03.003

Google Scholar

[2] H. Roy, A. Ray, K. Barat, C. Hochmuth, S. Sivaprasad, S. Tarafder, U. Glatzel, K.K. Ray, Structural variations ahead of a crack tip during monotonic and cyclic fracture tests of AISI 304 LN stainless steel, Mater. Sci. Eng. A. 561 (2013) 88-89.

DOI: 10.1016/j.msea.2012.10.074

Google Scholar

[3] H. Roy, S. Sivaprasad, S. Tarafder, K.K. Ray, Monotonic vis-à-vis cyclic fracture behaviour of AISI 304LN stainless steel, Eng. Fract. Mech. 76 (2009) 1822–1832.

DOI: 10.1016/j.engfracmech.2009.04.001

Google Scholar

[4] S. Ghosh, V. Kain, A. Ray, H. Roy, S. Sivaprasad, S. Tarafder, K.K. Ray, Deterioration in fracture toughness of 304LN austenitic stainless steel due to sensitization, Metall. Mater. Trans. A. 40A (2009) 2938-2949.

DOI: 10.1007/s11661-009-0023-y

Google Scholar

[5] A. Das, S. Sivaprasad, P.C. Chakraborti, S. Tarafder, Morphologies and characteristics of deformation induced martensite during low cycle fatigue behaviour of austenitic stainless steel, Mater. Sci. Eng. A. 528 (2011) 7909–7914.

DOI: 10.1016/j.msea.2011.07.011

Google Scholar

[6] S. Biswas, S. Sivaprasad, N. Narasaiah, S. Tarafder, P.C. Chakraborti, Load history effect on FCGR behaviour of 304LN stainless steel, Int. J. Fatigue. 29 (2007) 786–791.

DOI: 10.1016/j.ijfatigue.2006.06.003

Google Scholar

[7] K. Dutta, S. Sivaprasad, S. Tarafder, K.K. Ray, Influence of asymmetric cyclic loading on substructure formation and ratcheting fatigue behaviour of AISI 304LN stainless steel, Mater. Sci. Eng. A. 527 (2010) 7571–7579.

DOI: 10.1016/j.msea.2010.07.107

Google Scholar

[8] A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, S. Tarafder, Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel, Mater. Sci. Eng. A. 486 (2008) 283–286.

DOI: 10.1016/j.msea.2007.09.005

Google Scholar

[9] U. Krupp, C. West, H.J. Christ, Deformation-induced martensite formation during cyclic deformation of metastable austenitic steel: Influence of temperature and carbon content, Mater. Sci. Eng A. 481-482 (2008) 713–717.

DOI: 10.1016/j.msea.2006.12.211

Google Scholar

[10] E. Nagy, V. Mertinger, F. Tranta, J. Sólyom, Deformation induced martensitic transformation in stainless steels, Mater. Sci. Eng. A. 378 (2004) 308-313.

DOI: 10.1016/j.msea.2003.11.074

Google Scholar

[11] A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, D.K. Matlock, Quantitative measurement of deformation-induced martensitein 304 stainless steel by X-ray diffraction, Scripta. Mater. 50 (2004) 1445-1449.

DOI: 10.1016/j.scriptamat.2004.03.011

Google Scholar

[12] L.E. Murr, K.P. Staudhammer, S.S. Hecker, Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II. Microstructural study, Metall. Trans. A. 13 (1982) 627–635.

DOI: 10.1007/bf02644428

Google Scholar

[13] S.S. Hecker, M.G. Stout, K.P. Staudhammer, J.L. Smith, Effect of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part I. Magnetic measurement and mechanical behaviour, Metall. Trans. A. 13 (1982).

DOI: 10.1007/bf02644427

Google Scholar

[14] G.L. Huang, D.K. Matlock, G. Krauss, Martensite formation, strain rate sensitivity, and deformation behaviour of type 304 stainless steel sheet, Metall. Trans. A. 20 (1989) 1239–1246.

DOI: 10.1007/bf02647406

Google Scholar

[15] V. Shrinivas, S.K. Varma, L. Murr, Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling, Metall. Mater. Trans. A. 26 (1995) 661–671.

DOI: 10.1007/bf02663916

Google Scholar

[16] J. Talonen, Effect of strain-induced -martensite transformation on mechanical properties of metastable austenitic stainless steels, Doctoral Dissertation, Helsinki University of Technology, Finland (2007).

Google Scholar

[17] J.W. Brooks, M.H. Loretto, R.E. Smallman, Direct observations of martensite nuclei in stainless steel, Acta. Metall. 27 (1979) 1839–1847.

DOI: 10.1016/0001-6160(79)90074-9

Google Scholar

[18] J.Y. Choi, W. Jin, Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels, Scripta. Mater. 36 (1997) 99-104.

DOI: 10.1016/s1359-6462(96)00338-7

Google Scholar

[19] W.S. Lee, C.F. Lin, Impact properties and microstructure evolution of 304L stainless steel, Mater. Sci. Eng. A. 308 (2001) 124-135.

Google Scholar

[20] K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, Y. Bréchet, Strengthening via the formation of strain-induced martensite in stainless steels, Mat. Sci. Eng. A. 387–389 (2004) 873–881.

DOI: 10.1016/j.msea.2003.11.084

Google Scholar

[21] Z. Mei, J.W. Morris, Influence of deformation induced martensite on fatigue crack propagation in 304 type steels, Metall. Trans. A. 21 (1990) 3137–3152.

DOI: 10.1007/bf02647310

Google Scholar

[22] G.B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metall. Trans. A. 6A (1975) 791-795.

DOI: 10.1007/bf02672301

Google Scholar

[23] J. Talonen, H. Hanninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Mater. 55 (2007) 6108–6118.

DOI: 10.1016/j.actamat.2007.07.015

Google Scholar

[24] H. Hallberg, L. Banks-Sills, M. Ristinmaa, Crack tip transformation zones in austenitic stainless steel, Engg. Fract. Mech. 79 (2012) 266-280.

DOI: 10.1016/j.engfracmech.2011.11.004

Google Scholar

[25] K. Barat, Fractal characterization of fractured surfaces, M. Tech Dissertation, IIT Kharagpur, India, (2010).

Google Scholar

[26] H. Roy, Monotonic and cyclic fracture behaviour of AISI 304LN stainless steel, Doctoral Dissertation, IIT Kharagpur, India, (2011).

Google Scholar

[27] T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, S. Koike, M. Ichihara, An experimental study of the martensite nucleation and growth in 18/8 stainless steel, Acta. Metall. 25 (1977) 1151–1162.

DOI: 10.1016/0001-6160(77)90202-4

Google Scholar

[28] P.K. Singh, V.R. Ranganath, S. Tarafder, P. Prasad, V. Bhasin, K.K. Vaze, H.S. Khuswaha, Effect of cyclic loading on elastic–plastic fracture resistance of PHT system piping material of PHWR, Int. J. Pressure Vessels Piping. 80 (2003) 745–752.

DOI: 10.1016/s0308-0161(03)00133-9

Google Scholar

[29] H. Kobayashi, T. Kusumoto, H. Nakazawa, The Cyclic J-R Curve and Upper-Limit Characteristic of Fatigue-Crack Growth in 221 Cr-Mo Steel, Int. J. Pressure Vessels Piping. 52 (1992) 337–356.

DOI: 10.1016/0308-0161(92)90090-3

Google Scholar

[30] S. Kundu, H.K.D.S. Bhadeshia, Transformation texture in deformed steels, Scripta. Mater. 55 (2006) 779-781.

DOI: 10.1016/j.scriptamat.2006.07.021

Google Scholar

[31] M. Grosse, D Kalkhof, M. Niffenegger, L Keller, Influencing parameters on martensite transformation during low cycle fatigue for steel AISI 321, Mater. Sci. Eng. A. 437 (2006) 109-113.

DOI: 10.1016/j.msea.2006.04.077

Google Scholar

[32] S.G.S. Raman, K.A. Padmanabhan, A comparision of the room-temperature behaviour of AISI 304LN stainless steel and nimonic 90 under strain cycling, Int. J. Fatigue. 17 (1995) 271-277.

DOI: 10.1016/0142-1123(95)93539-e

Google Scholar

[33] G.R. Lehnhoff, K.O. Findley, Influence of austenite stability on predicted cyclic stress-strainresponse of metastable austenitic steels, Procedia Eng. 10 (2011) 104-117.

DOI: 10.1016/j.proeng.2011.04.181

Google Scholar

[34] D. Ye, S. Matsuoka, N. Nagashima, N. Suzuki, The low-cycle fatigue, deformation and final fracture behaviour of an austenitic stainless steel, Mater. Sci. Eng.A. 415 (2006) 104-117.

DOI: 10.1016/j.msea.2005.09.081

Google Scholar

[35] S.K. Paul, Experimentation and Material Modelling for Cyclic Plastic Deformation Behaviour in Primary Heat Transport Piping (PHT) Materials, Doctoral Dissertation, Jadavpur University, Kolkata, India, (2012).

Google Scholar

[36] . ] G.J. Kang, Y.G. Li, J. Zhang, Y.F. Sun, Q. Gao, Uniaxial ratcheting and failure behaviors of two steels, Theor. Appl. Fract. Mec. 43 (2005) 199–209.

DOI: 10.1016/j.tafmec.2005.01.005

Google Scholar

[37] C. Gupta, J.K. Chakravartty, G.R. Reddy, S. Banerjee, Uniaxial cyclic deformation behaviour of SA 333 Gr 6 piping steel at room temperature, Int. J. Pres. Ves. Pip. 82 (2005) 459–469.

DOI: 10.1016/j.ijpvp.2005.01.005

Google Scholar

[38] L.W. Tsay, S.C. Yu, R. T. Huang, Effect of austenite instability on the hydrogen-enhanced crack growth of austenitic stainless steels, Corrosion Science, 49 (2007) 2973–2984.

DOI: 10.1016/j.corsci.2007.01.008

Google Scholar