Studying the Mechanism behind Stress Corrosion Cracking of Non Sensitized 304L Austenitic Stainless Steel

Article Preview

Abstract:

The susceptibility of non sensitized 304L stainless steel (SS) components towards stress corrosion cracking (SCC) has been studied here in the light of the significant role played by surface working operations. The plant experience shows that the fracture surfaces of non sensitized 304L stainless steel components have no signs of carbide precipitation. However, heavy plastic deformation has been evidenced in the form of high density of slip bands on the surface up to a depth of about 100 μm with high tensile residual stresses near the surface. The present study has established that the primary cause of the increase in SCC susceptibility is the heavy plastic deformation near the surface and high magnitude of tensile residual stresses which is a consequence of the surface finishing operations like machining and grinding. In this study, solution annealed 304L stainless steel has been subjected to a) surface working operations like machining and grinding and b) bulk deformation operations such as 10 % cold rolling operation. The materials in different conditions where then subjected to detailed a) microstructural characterisation, b) electrochemical characterisation and c) tests for determining the stress corrosion cracking susceptibility. The distinct differences in the micro structure as a result of bulk deformation vs. surface deformation of 304L austenitic stainless steel were highlighted and correlated to the susceptibility towards stress corrosion cracking. The effect of surface working on the nature and composition of high temperature (300 °C and 10 MPa) oxide formed on 304L stainless steel has been studied in-situ by contact electric resistance (CER) and electrochemical impedance spectroscopy measurements using controlled distance electrochemistry technique in high purity water (conductivity < 0.1 μScm-1) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlighted the distinct differences in the oxidation behaviour of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

564-574

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.M. Angeliu, P.L. Andresen, M.L. Pollick, Corrosion 97, NACE, Paper no. 97 (1997).

Google Scholar

[2] T.M. Angeliu, P.L. Andresen, E. Hall, J.A. Sutliff, S. Sitzman, R.M. Horn, Proc. 9th Int. Symp. Environ. Degrad. Mater. Nucl. Pow. Sys., TMS, (1999) 311-330.

Google Scholar

[3] Peter L. Andresen, Martin M. Morra, J. Nucl. Mater. 383 (2008) 97–111.

Google Scholar

[4] T. Shoji, Proc. 11th Int. Symp. Environ. Degrad. Mater. Nucl. Pow. Sys., held on August 10–14, Skamania, Stevenson, Washington, ANS, (2003) 588.

Google Scholar

[5] E.P. Simonen, L.E. Thomas, and S.M. Bruemmer, In: Proc. 11th Int. Symp. Environ. Degrad. Mater. Nucl. Pow. Sys., ed. Nelson, J. L., G. S. Was, American Nuclear Society, (2004) 1062.

Google Scholar

[6] H.M. Chung, W.E. Ruther, J.E. Sanecki, A. Hins, N.J. Zaluzec, T.F. Kassner, J. Nucl. Mater., 239 (1996) 61-79.

DOI: 10.1016/s0022-3115(96)00677-0

Google Scholar

[7] A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, A.K. Bradbury, Corros. Sci. 53 (2011) 3398–3415.

DOI: 10.1016/j.corsci.2011.06.020

Google Scholar

[8] V. Kain, P.K. De, Materials Performance 42 (2003) 50–54.

Google Scholar

[9] S. Ghosh, V. P. S. Rana, V. Kain, V. Mittal, S.K. Baveja, Mater. Des., 32 (2011) 3823-3831.

Google Scholar

[10] R. Ishibashi, H. Anzai, CD-Proceedings of EAC-ASIA, December 18-19, (2007) in Sendai.

Google Scholar

[11] M. Koshiishi, H. Fujimori, M. Okada, A. Hirano, Hitachi Rev., 58 (2009) 88-93.

Google Scholar

[12] Swati Ghosh, Vivekanand Kain, Mater. Sci. Eng: A, 527 (2010) 679-683.

Google Scholar

[13] J. Kuniya, I. Masaoka, R. Sasaki, S. Kirihara, J. Mater. Eng. Sys., 1 (1980) 30-40.

Google Scholar

[14] S. Roychowdhury, S. Ghosh, V. P. S. Rana, V. Kain, CD proc. of CORCON 2010 NIGIS, Goa, India; September 23–26 (2010).

Google Scholar

[15] Y. Sueishi, A. Kohyama, H. Kinoshita, M. Narui, K. Fukumoto, Fus. Eng. Des., 81 (2006) 1099-1103.

Google Scholar

[16] Y. Iino, T. Y. Kim, S. H. Chung, J. Mater. Sci. Lett., 12 (1993) 520-522.

Google Scholar

[17] W. Kuang, E. Han, X. Wu, J. Rao, Corros. Sci., 52 (2010) 3654-3660.

Google Scholar

[18] Y. -J. Kim, Corrosion 55 (1999) 81–88.

Google Scholar

[19] T. Miyazawa, T. Terachi, S. Uchida, T. Satoh, T. Tsukada, Y. Satoh, Y. Wada and H. Hosokawa, J. Nucl. Sci. and Tech., 43 (2006) 884–895.

DOI: 10.1080/18811248.2006.9711173

Google Scholar

[20] T. Terachi, K. Arioka, Corrosion, Houston, TX, NACE, Paper No. 06608, (2006).

Google Scholar

[21] Y. Wada, A. Watanabe, M. Tachibana, K. Ishida, N. Uetake, S. Uchida, K. Akamine, M. Sambongi, S. Suzuki and K. Ishigure, J. Nucl. Sci. Tech., 38 (2001) 183–192.

DOI: 10.1080/18811248.2001.9715020

Google Scholar

[22] T. Nakayama and Y. Oshida, Corrosion, 24 (1968) 336–337.

Google Scholar

[23] B. Stellwag, Corros. Sci., 40 (1998) 337–370.

Google Scholar

[24] J. Robertson, Corros. Sci., 32 (1991) 443–465.

Google Scholar

[25] D.H. Lister, R.D. Davidson and E. Mcalpine, Corros. Sci., 27 (1987) 113–140.

Google Scholar

[26] X. Gao, X. -Q. Wu, Z. -E. Zhang, H. Guan and E. -H. Han, J. Super. Fluids 42 (2007) 157–163.

Google Scholar

[27] M.C. Sun, X. -Q. Wu, Z. -E. Zhang and E. -H. Han, J. Supercr. Fluids 47 (2008), 309–317.

Google Scholar

[28] S.E. Ziemniak, M. Hanson and P.C. Sander, Corros. Sci. 50 (2008) 2465–2477.

Google Scholar

[29] M. -C. Sun, X. -Q. Wu, Z. -E. Zhang and E. -H. Han, Corros. Sci., 51 (2009) 1069–1072.

Google Scholar

[30] J. Macák, P. Sajdl, P. Kučera, R. Novotný, J. Vošta, Electro. Acta, 51(2006) 3566-3577.

DOI: 10.1016/j.electacta.2005.10.013

Google Scholar

[31] J.E. Forrest and J. Robertson, Corros. Sci., 32 (1991) 541.

Google Scholar

[32] D. Lister, Proceedings of the EUROCORR'2003, Eur. Corros. Feder. Cong., Budapest, Hungary, 2003, paper 426.

Google Scholar

[33] S. Jansson, W. Hubner, G. Ostberg and M. Pourbaix, Br. Corros. J., 4 (1969) 21-31.

Google Scholar

[34] W.E. Ruther, S. Greenberg, J. Electro. Soc. 111 (1964), 1116.

Google Scholar

[35] J.C. Langevoort, T. Fransen and P.J. Ceilings, Werks. Korros., 31 (1983) 500.

Google Scholar

[36] V.A. Marichev, Corrosion, 52, (1994) 53-66.

Google Scholar

[37] T. Saario, T. Laitinen, J. Piippo, Mater. Sci. Forum, 289-292 (1998) 193-202.

Google Scholar

[38] L. Charny, T. Saario, V. A. Marichev, Surf. Sci., 312 (1994) 422-428.

Google Scholar

[39] B. Beverskog, M. Bojinov, A. Englund, P. Kinnunen, T. Laitinen, K. Mäkelä, T. Saario and P. Sirkiä, Corros. Sci., 44 (2002) (1901).

DOI: 10.1016/s0010-938x(02)00008-2

Google Scholar