Corrosion Resistance of 9 - 15% Cr ODS Steels and its Comparison with Austenitic Stainless Steel

Article Preview

Abstract:

An oxide dispersion strengthened steels are one of the most promising high temperatures, and high performance advanced structural material being developed for future fast reactors and high-temperature Generation IV reactors. In the present work, the corrosion resistance and its correlation with the passive film compositions of 11% Cr F/M and 9-15% Cr (with Zr or Hf) ODS steels is examined and compared with AISI type 304L stainless steel in boiling 60 - 62% (~13 M) HNO3. The corrosion rate measured in 62% HNO3 for 240 h of 11% Cr F/M, 9% Cr and 15% Cr (Zr) ODS steels show high corrosion rate. On the other hand, low corrosion rate was observed in 304L stainless steel (0. 21 to 23 mm y-1). However, severe intergranular corrosion attack was revealed in type 304L SS after 240 h exposure, but none in ODS steels. Such an intergranular corrosion attack seen in type 304L stainless steel is undesirable. On the contrary, low corrosion rate (0.04 0.15 mm y-1) of 15% Cr (Hf) ODS steel in 3 M, 6 M and 9 M HNO3, comparable to that of type 304L stainless steel was observed. The improved corrosion resistance of 15% Cr (Hf) ODS steel was attributed to enrich (20 at. %) and protective Al2O3 layer formation in addition to Cr2O3 in the passive film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

575-582

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ukai, M. Fujiwara, J. Nucl. Mater. 307–311 (2002) 749-757.

Google Scholar

[2] S. Ukai, Comp. Nucl. Mater. 4 (2012) 241-271.

Google Scholar

[3] S. J. Zinkle, N. M. Ghoniem, J. Nucl. Mater. 417, (2011) 2-8.

Google Scholar

[4] J.H. Lee, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, J. Nucl. Mater. 417 (2011) 1225-1228.

DOI: 10.1016/j.jnucmat.2010.12.279

Google Scholar

[5] S. Ningshen, M. Sakairi, K. Suzuki, S Ukai, Appl. Sur. Sci. 248 (2013) 345-355.

Google Scholar

[6] S. Ningshen, M. Sakairi, K. Suzuki, S. Ukai, Corrosion. In press (2013) doi: http: / dx. doi. org/10. 5006/0839.

Google Scholar

[7] B. Raj, U. Kamachi Mudali, Prog. Nucl. Energy. 48 (2006) 283-313.

Google Scholar

[8] V. Kain, P.K. De, Int. J. Nucl. Energy. Sci. Tech. 1 (2005) 220-231.

Google Scholar

[9] S. Ningshen, U. Kamachi Mudali, S. Ramya, B. Raj Corros. Sci. 53 (2011) 64-70.

Google Scholar

[10] M. Sakairi, S. Ningshen, K. Suzuki, S Ukai, J. Civil. Eng. Arch, Accepted (2013).

Google Scholar

[11] A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, T.F. Abe, J. Nucl. Mater, 417 (2011)176–179.

DOI: 10.1016/j.jnucmat.2010.12.300

Google Scholar

[12] J. Isselin, R. Kasada, A. Kimura, Corros. Sci, 52 (2010) 3266–3270.

Google Scholar

[13] S.H. Nie, Y. Chen, X. Ren, K. Sridharan, T.R. Allen, J. Nucl. Mater. 399 (2010) 231–235.

Google Scholar