A Comparative Study of Semiconducting Behavior of Passive Film of High Nitrogen and Ni and Mn Free Stainless Steels in 3.5 wt. % NaCl

Article Preview

Abstract:

The semiconducting property of passive films formed on Alloy 1 (18Cr-2Mo-1N)], Alloy 2 (17.5Cr-3Mo-0.5N)] and Alloy 3 (Type 316 SS) were studied by using the Mott-Schottky (M-S) approach in 3.5 wt. % NaCl solution of pH 2, 7 and 12. The M-S analysis shows that the film acts as n - type and p - type semiconductors across the potential range. The donor density of Alloy 1 has been found to be lower by about 31 %, 11 % and 6 % as compared to that of Alloy 2 at pH 2, 7 and 12 respectively. However; Alloy 3 has higher donor density 44 %, 27 % and 30 % in comparison with Alloy 1. The donor density of Alloy 3 found to be greater about 21 %, 18 % and 25 % to the Alloy 2 at pH 2, 7 and 12 respectively. These results indicate that the sensitivity of electrolyte composition and the presence of alloying elements like nitrogen and nickel on the donor density of passive film. High nitrogen stainless steels exhibited a lower donor density that corresponds to good protectiveness, more stable passive film which is in agreement with a low passive current density (ipass), higher pitting potential (Epit) and polarization resistance (Rp).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

626-631

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. O. Speidel: Properties of High Nitrogen Steels, Proc. of the HNS Conf. (1990), p.128.

Google Scholar

[2] J.W. Simmons, Mat. Sci. & Engg. A, 207 (1996), p.159.

Google Scholar

[3] M. Sumita, T. Hanawa, S.H. Teoh, Mat. Sci. & Engg. C, 24 (2004), p.753.

Google Scholar

[4] G. Rondelli, P. Torricelli, M. Fini, R. Giardino, Biomat., 26 (2005), p.739.

Google Scholar

[5] M.H. Dean and U. Stimming, Corros. Sci., 29 (1989), p.199.

Google Scholar

[6] A.M.P. Simoes, M.G.S. Ferreira, B. Rondot, M. da Cunha Belo, J. Electrochem. Soc., 137 (1990), p.82.

Google Scholar

[7] N.E. Hakiki, M.F. Montemor, M.G.S. Ferreira, M. da Cunha Belo, Corros. Sci., 42 (2000), p.687.

Google Scholar

[8] S. Virtanen, P. Schmuki, Bohni, H., P. Vuoristo, T. Mantyla, J. Electrochem. Soc. 142 (1995), p.3067.

Google Scholar

[9] Gaben, Vuillemin, R. Oltra, J. Electrochem. Soc., 151 (2004), p.595.

Google Scholar

[10] M. P. Ryan, R. C. Newman, and G. E. Thompson, J. Electrochem. Soc., 142, (1995), p.177.

Google Scholar

[11] G. Nogami, J. Electrochem. Soc., 133(1986), p.525.

Google Scholar

[12] M.H. Dean, U. Stimming, J. Electroanal. Chem., 228 (1987), p.135.

Google Scholar

[13] P. Schmuki and H. Bohni, J. Electrochem. Soc., 139 (1992), p. (1908).

Google Scholar

[14] P. Schmuki, H. Bohni, Electrochim. Acta, 40 (1995), p.775.

Google Scholar

[15] M.D.A. Cunha Belo, M.G.S. Ferreira, A.M.P. Simoes, Corros. Sci., 40 (1998), p.481.

Google Scholar

[16] N.E. Hakiki, M. Da Cunha Belo, A.M.P. Simões, M.G.S. Ferreira, J. Electrochem. Soc., 145 (1998), p.3821.

Google Scholar

[17] M.F. Montemor, A.M.P. Simoes, M.G.S. Ferreira, M. Da Cunha Belo, Corros. Sci., 41 (1999), p.17.

Google Scholar

[18] S. Ningshen, U. Kamachi Mudali, V.K. Mittal, H.S. Khatak, Corros. Sci., 49 (2007), p.481.

Google Scholar

[19] H-Y. Ha, T-H. Lee, C-S. Oh and S-J. Kim, Scripta Mat., 61 (2009), p.121.

Google Scholar

[20] Y.X. Qiao, Y.G. Zheng, W. Ke, P.C. Okafor, Corros. Sci., 51 (2009), p.979.

Google Scholar

[21] Z. Feng, X. Cheng, C. Dong, L. Xu, Xi. Li, Corros. Sci., 52 (2010), p.3646.

Google Scholar

[22] J. -B. Lee, S. -I. Yoon, Mat. Chem. and Phy., 122 (2010), p.194.

Google Scholar

[23] S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980, p.64.

Google Scholar

[24] M.G.S. Ferreira, N.E. Hakiki, G. Goodlet, S. Faty, A.M.P. Simoes, M. Da Cunha Belo, Electrochim. Acta, 46 (2001), p.3767.

DOI: 10.1016/s0013-4686(01)00658-2

Google Scholar

[25] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Corros. Sci., 50 (2008), p.1796.

Google Scholar

[26] M.H. Dean and U. Stimming, J. Electroanal. Chem., 228 (1987), p.135.

Google Scholar

[27] Sunseri, S. Piazza, F. Di. Quarto, J. Electrochem. Soc., 137 (1990), p.2411.

Google Scholar

[28] H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci. 33 (1992), p.225.

Google Scholar

[29] M.W. Tan, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci., 37 (1995), p.1289.

Google Scholar

[30] E.A. Cho, H.S. Kwon, D.D. Macdonald, Electrochim. Acta, 47 (2002), p.1661.

Google Scholar

[31] S. B. Arya,V. S. Raja, A. N. Tiwari and Y. Katada, Electrochemical Corrosion Behaviors of Nickel and Manganese free High Nitrogen Stainless Steel, in Baldev Raj et al. (Eds. ), Advances in Stainless Steel, CRC press, 2010, p.612.

DOI: 10.1149/ma2006-01/6/323

Google Scholar

[32] S.B. Arya, PhD thesis (not submitted).

Google Scholar