Anodic Polarization Behavior of Cold Worked Austenitic Stainless Steel

Article Preview

Abstract:

The anodic polarization behavior of Sanicro 28 austenitic stainless steels has been established in the cold worked (10 to 80% reduction in thickness) samples in 1N HCl, 1M H2SO4+ 1.5N HCl and 3N HCl solutions at room temperature. The current oscillations during the potentiodynamic scans appeared in 3N HCl implying formation of meta stable pits and this solution more severe than 1N HCl and 1M H2SO4+ 1.5N HCl. Two anodic peaks were observed in as-received and the cold worked samples in 3N HCl. In as-received state, the first anodic peak appeared at-3.95 mVSCE and the second anodic peak appeared at 116 mVSCE. It was established that selective dissolution started from 18mVSCE. The grains and grain boundaries were not attacked at the beginning of the first peak-168 mVSCE and started revealing at 18 and 216 mVSCE in the potentiodynamic polarization test. The fore-scatter detector (FSD) attached to FEI Quanta EBSD revealed the pitting morphology of the specimens. It is shown that pit dimensions, types, distribution, the shape of pits in all deformation conditions is hemispherical and number of pits did not depend on the microstructural features, irrespective of the plastic deformation and it may not be related to severity of plastic deformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

632-642

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Bernhardsson, P. Norberg, H. Eriksson, O. Forssell, Selection of stainless steels for refineries and the petrochemical industry, Anti-Corrosion Methods and Materials, 33 (1986) 14-17.

DOI: 10.1108/eb020412

Google Scholar

[2] B. Larsson, U. Lundell, S. Bukovinsky, Special stainless steels for the process industry, Materials & Design, 6 (1985) 306-312.

DOI: 10.1016/0261-3069(85)90013-5

Google Scholar

[3] T. Bellezze, G. Roventi, R. Fratesi, Electrochemical characterization of three corrosion-resistantalloys after processing for heating-element sheathing, Electrochimica Acta, 44 (2004) 3005-3014.

DOI: 10.1016/j.electacta.2004.01.060

Google Scholar

[4] J. Keir, Experiments and observation the dissoultions of metals in acids, and their precipitation; with an account of new compound acid menstrum useful in some mechanical operations of parting metals, Philosophical Transcation of the Royal Society of London, (1790) 359-384.

DOI: 10.1098/rstl.1790.0024

Google Scholar

[5] N. Sato, Anodic Breakdown of Passive Films on Metals, Journal of The Electrochemical Society, 129 (1982) 255-260.

DOI: 10.1149/1.2123808

Google Scholar

[6] N. Sato, The Stability of Pitting Dissolution of Metals in Aqueous Solution, Journal of The Electrochemical Society, 129 (1982) 260-264.

DOI: 10.1149/1.2123809

Google Scholar

[7] N. Sato, An overview on the passivity of metals, Corrosion Science, 31 (1990) 1-19.

Google Scholar

[8] M.G. Alvarez, J.R. Galvele, Pitting Corrosion, in: Tony, J. A. Richardson (Eds. ), Shreir's Corrosion, Elsevier, oxford, 2010, pp.772-800.

DOI: 10.1016/b978-044452787-5.00030-5

Google Scholar

[9] ASM Handbook, Volume 13A-Corrosion: Fundamentals, Testing, and Protection, nineth edit., ASM International, (2003).

Google Scholar

[10] E. McCafferty, Passivity, Introduction to Corrosion Science, Springer, New York: 2010, pp.209-262.

Google Scholar

[11] G.C. Palit, V. Kain, H.S. Gadiyar, Electrochemical Investigations of Pitting Corrosion in Nitrogen-Bearing Type 316LN Stainless Steel. Corrosion, 49 (1993) 977-991.

DOI: 10.5006/1.3316025

Google Scholar

[12] Y.F. Cheng, J.L. Luo, Metastable Pitting of Carbon Steel under Potentiostatic Control, Journal of the Electrochemical Society 146 (1999) 970-976.

DOI: 10.1149/1.1391707

Google Scholar

[13] Philippe Marcus, Corrosion Mechanisms in Theory and Practice, third ed., Springer, 2010. pp.209-262.

Google Scholar

[14] M.A. Amin, Metastable and stable pitting events on Al induced by chlorate and perchlorateanions Polarization, XPS and SEM studies, Electrochimica Acta, 54 (2009) 1857-1863.

DOI: 10.1016/j.electacta.2008.10.009

Google Scholar

[15] P.C. Pistorius, G.T. Burstein, Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel, Corrosion Science, 36 (1994) 525-538.

DOI: 10.1016/0010-938x(94)90041-8

Google Scholar

[16] P.C. Pistorius, G.T. Burstein, Metastable Pitting Corrosion of Stainless Steel and the Transition to Stability, Philosophical Transactions Physical Sciences and Engineering, 341 (1992) 531-559.

DOI: 10.1098/rsta.1992.0114

Google Scholar

[17] Y.M. Tang, Y. Zuo, X.H. Zhao, The metastable pitting behaviors of mild steel in bicarbonate and nitrite solutions containing Cl-, Corrosion Science, 50 (2008) 989-994.

DOI: 10.1016/j.corsci.2007.12.003

Google Scholar

[18] L. Peguet, B. Malki, B. Baroux, Influence of cold working on the pitting corrosion resistance of stainless steels, Corrosion Science, 49 (2007) 1933-(1948).

DOI: 10.1016/j.corsci.2006.08.021

Google Scholar

[19] L. Peguet, B. Malki, B. Baroux, Effect of austenite stability on the pitting corrosion resistance of cold worked stainless steels, Corrosion Science, 51 (2009) 493-498.

DOI: 10.1016/j.corsci.2008.12.026

Google Scholar

[20] U. Kamachi Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, B. Raj, On the Pitting corrosion resistance of nitrogen alloyed cold worked austenitic stainless steels, CorrosionScience, 44 (2002) 2183-2198.

DOI: 10.1016/s0010-938x(02)00035-5

Google Scholar

[21] R.F.A. Jargelius-Pettersson, Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels. Corrosion Science, 41 (1999) 1639-1664.

DOI: 10.1016/s0010-938x(99)00013-x

Google Scholar

[22] J. Shu, H. Bi, X. Li, Z. Xu, The effect of copper and molybdenum on pitting corrosion and stress corrosion cracking behavior of ultra-pure ferritic stainless steels, Corrosion Science, 57 (2012)89-98.

DOI: 10.1016/j.corsci.2011.12.030

Google Scholar

[23] K. Sugimoto, Y. Sawada, The role of molybdenum additions to austenitic stainless steels in theinhibition of pitting in acid chloride solutions, Corrosion Science, 17 (1977) 425-445.

DOI: 10.1016/0010-938x(77)90032-4

Google Scholar

[24] R.C. Newman, T. Shahrabi, The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behaviour of austenitic stainless steel in hydrochloric acid, Corrosion Science, 27 (1987) 827-838.

DOI: 10.1016/0010-938x(87)90040-0

Google Scholar

[25] Y.X. Qiao, Y.G. Zheng, W. Ke, P.C. Okafor, Electrochemical behaviour of high nitrogen stainless steel in acidic solutions, Corrosion Science, 51 (2009) 979-986.

DOI: 10.1016/j.corsci.2009.02.026

Google Scholar

[26] G.O. Ilevbare, G.T. Burstein, The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels, Corrosion Science, 43 (2001) 485-513.

DOI: 10.1016/s0010-938x(00)00086-x

Google Scholar

[27] R. Qvarfort, Some observations regarding the influence of molybdenum on the pitting corrosion resistance of stainless steels, Corrosion Science, 40 (1998) 215-223.

DOI: 10.1016/s0010-938x(97)00118-2

Google Scholar

[28] T. Sourisseau, E. Chauveau, B. Baroux, Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media. Corrosion Science, 47 (2005) 1097-1117.

DOI: 10.1016/j.corsci.2004.05.024

Google Scholar

[29] A.S. Hamdy, E. El-Shenawy, T. El. Bitar, Electrochemical Impedance Spectroscopy Study of the Corrosion Behavior of Some Niobium Bearing Stainless Steels in 3. 5% NaCl, International Journal of Electrochemical Science, 1 (2006) 171-180.

DOI: 10.1016/j.matlet.2006.10.043

Google Scholar

[30] J.H. Potgieter, Corrosion of Passive Alloys: The effect of nobel additions in : Tony, J. A. Richardson (Eds), Shreir's Corrosion Elsevier, Oxford, 2010, pp.2224-2249.

DOI: 10.1016/b978-044452787-5.00188-8

Google Scholar

[31] T. Hong, M. Nagumo, Effect of surface roughness on early stages of pitting corrosion of Type 301 stainless steel, Corrosion Science, 39 (1997) 1665-1672.

DOI: 10.1016/s0010-938x(97)00072-3

Google Scholar

[32] K. Sasaki, G.T. Burstein, The generation of surface roughness during slurry erosion- corrosion and its effect on the pitting potential, Corrosion Science, 38 (1996) 2111-2120.

DOI: 10.1016/s0010-938x(96)00066-2

Google Scholar

[33] G.T. Burstein, P.C. Pistorius, Surface Roughness and the Metastable Pitting of Stainless Steel in Chloride solutions, Corrosion, 51 (1995) 380-385.

DOI: 10.5006/1.3293603

Google Scholar

[34] R. Stefec, F. Franz, A study of the pitting corrosion of cold-worked stainless steel, CorrosionScience, 18 (1978) 161-168.

DOI: 10.1016/s0010-938x(78)80086-9

Google Scholar

[35] F. Ruel, P. Volovitch, L. Peguet, A. Gaugain, K. Ogle: submitted to Corrosion (2013).

Google Scholar

[36] L. Felloni, S. Sostero Traverso, G.L. Zucchini, G.P. Cammarota, Investigation on the second anodic current maximum on the polarization curves of commercial stainless steels in sulphuric acid, Corrosion Science, 13 (1973) 773-789.

DOI: 10.1016/s0010-938x(73)80015-0

Google Scholar

[37] M.B. Rockel, Interpretation of the Second Anodic Current Maximum on Polarization Curves of Sensitized Chromium Steels in 1N H2 SO4, Corrosion, 27 (1971) 95-103.

DOI: 10.5006/0010-9312-27.3.95

Google Scholar

[38] A.A. Hermas, M.S. Morad, K. Ogura, A correlation between phosphorous impurity in stainless steel and a second anodic current maximum in H2SO4, Corrosion Science, 41 (1999) 2251-2266.

DOI: 10.1016/s0010-938x(99)00046-3

Google Scholar

[39] V. Randle, The coincidence site lattice and the sigma enigma, Materials Characterization, 47(2001) 411-416.

DOI: 10.1016/s1044-5803(02)00193-6

Google Scholar

[40] V. Randle, Sigma-Boundary Statistics by Length and Number, Interface Science, 10 (2002) 271-277.

Google Scholar

[41] V. Randle, The influence of annealing twinning on microstructure evolution, Journal of Materials Science, 40 (2005) 853-859.

DOI: 10.1007/s10853-005-6501-8

Google Scholar

[42] V. Randle, Twinning-related grain boundary engineering, Acta Materialia, 52 (2004) 4067-4081.

DOI: 10.1016/j.actamat.2004.05.031

Google Scholar