[1]
S. Bernhardsson, P. Norberg, H. Eriksson, O. Forssell, Selection of stainless steels for refineries and the petrochemical industry, Anti-Corrosion Methods and Materials, 33 (1986) 14-17.
DOI: 10.1108/eb020412
Google Scholar
[2]
B. Larsson, U. Lundell, S. Bukovinsky, Special stainless steels for the process industry, Materials & Design, 6 (1985) 306-312.
DOI: 10.1016/0261-3069(85)90013-5
Google Scholar
[3]
T. Bellezze, G. Roventi, R. Fratesi, Electrochemical characterization of three corrosion-resistantalloys after processing for heating-element sheathing, Electrochimica Acta, 44 (2004) 3005-3014.
DOI: 10.1016/j.electacta.2004.01.060
Google Scholar
[4]
J. Keir, Experiments and observation the dissoultions of metals in acids, and their precipitation; with an account of new compound acid menstrum useful in some mechanical operations of parting metals, Philosophical Transcation of the Royal Society of London, (1790) 359-384.
DOI: 10.1098/rstl.1790.0024
Google Scholar
[5]
N. Sato, Anodic Breakdown of Passive Films on Metals, Journal of The Electrochemical Society, 129 (1982) 255-260.
DOI: 10.1149/1.2123808
Google Scholar
[6]
N. Sato, The Stability of Pitting Dissolution of Metals in Aqueous Solution, Journal of The Electrochemical Society, 129 (1982) 260-264.
DOI: 10.1149/1.2123809
Google Scholar
[7]
N. Sato, An overview on the passivity of metals, Corrosion Science, 31 (1990) 1-19.
Google Scholar
[8]
M.G. Alvarez, J.R. Galvele, Pitting Corrosion, in: Tony, J. A. Richardson (Eds. ), Shreir's Corrosion, Elsevier, oxford, 2010, pp.772-800.
DOI: 10.1016/b978-044452787-5.00030-5
Google Scholar
[9]
ASM Handbook, Volume 13A-Corrosion: Fundamentals, Testing, and Protection, nineth edit., ASM International, (2003).
Google Scholar
[10]
E. McCafferty, Passivity, Introduction to Corrosion Science, Springer, New York: 2010, pp.209-262.
Google Scholar
[11]
G.C. Palit, V. Kain, H.S. Gadiyar, Electrochemical Investigations of Pitting Corrosion in Nitrogen-Bearing Type 316LN Stainless Steel. Corrosion, 49 (1993) 977-991.
DOI: 10.5006/1.3316025
Google Scholar
[12]
Y.F. Cheng, J.L. Luo, Metastable Pitting of Carbon Steel under Potentiostatic Control, Journal of the Electrochemical Society 146 (1999) 970-976.
DOI: 10.1149/1.1391707
Google Scholar
[13]
Philippe Marcus, Corrosion Mechanisms in Theory and Practice, third ed., Springer, 2010. pp.209-262.
Google Scholar
[14]
M.A. Amin, Metastable and stable pitting events on Al induced by chlorate and perchlorateanions Polarization, XPS and SEM studies, Electrochimica Acta, 54 (2009) 1857-1863.
DOI: 10.1016/j.electacta.2008.10.009
Google Scholar
[15]
P.C. Pistorius, G.T. Burstein, Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel, Corrosion Science, 36 (1994) 525-538.
DOI: 10.1016/0010-938x(94)90041-8
Google Scholar
[16]
P.C. Pistorius, G.T. Burstein, Metastable Pitting Corrosion of Stainless Steel and the Transition to Stability, Philosophical Transactions Physical Sciences and Engineering, 341 (1992) 531-559.
DOI: 10.1098/rsta.1992.0114
Google Scholar
[17]
Y.M. Tang, Y. Zuo, X.H. Zhao, The metastable pitting behaviors of mild steel in bicarbonate and nitrite solutions containing Cl-, Corrosion Science, 50 (2008) 989-994.
DOI: 10.1016/j.corsci.2007.12.003
Google Scholar
[18]
L. Peguet, B. Malki, B. Baroux, Influence of cold working on the pitting corrosion resistance of stainless steels, Corrosion Science, 49 (2007) 1933-(1948).
DOI: 10.1016/j.corsci.2006.08.021
Google Scholar
[19]
L. Peguet, B. Malki, B. Baroux, Effect of austenite stability on the pitting corrosion resistance of cold worked stainless steels, Corrosion Science, 51 (2009) 493-498.
DOI: 10.1016/j.corsci.2008.12.026
Google Scholar
[20]
U. Kamachi Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, B. Raj, On the Pitting corrosion resistance of nitrogen alloyed cold worked austenitic stainless steels, CorrosionScience, 44 (2002) 2183-2198.
DOI: 10.1016/s0010-938x(02)00035-5
Google Scholar
[21]
R.F.A. Jargelius-Pettersson, Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels. Corrosion Science, 41 (1999) 1639-1664.
DOI: 10.1016/s0010-938x(99)00013-x
Google Scholar
[22]
J. Shu, H. Bi, X. Li, Z. Xu, The effect of copper and molybdenum on pitting corrosion and stress corrosion cracking behavior of ultra-pure ferritic stainless steels, Corrosion Science, 57 (2012)89-98.
DOI: 10.1016/j.corsci.2011.12.030
Google Scholar
[23]
K. Sugimoto, Y. Sawada, The role of molybdenum additions to austenitic stainless steels in theinhibition of pitting in acid chloride solutions, Corrosion Science, 17 (1977) 425-445.
DOI: 10.1016/0010-938x(77)90032-4
Google Scholar
[24]
R.C. Newman, T. Shahrabi, The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behaviour of austenitic stainless steel in hydrochloric acid, Corrosion Science, 27 (1987) 827-838.
DOI: 10.1016/0010-938x(87)90040-0
Google Scholar
[25]
Y.X. Qiao, Y.G. Zheng, W. Ke, P.C. Okafor, Electrochemical behaviour of high nitrogen stainless steel in acidic solutions, Corrosion Science, 51 (2009) 979-986.
DOI: 10.1016/j.corsci.2009.02.026
Google Scholar
[26]
G.O. Ilevbare, G.T. Burstein, The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels, Corrosion Science, 43 (2001) 485-513.
DOI: 10.1016/s0010-938x(00)00086-x
Google Scholar
[27]
R. Qvarfort, Some observations regarding the influence of molybdenum on the pitting corrosion resistance of stainless steels, Corrosion Science, 40 (1998) 215-223.
DOI: 10.1016/s0010-938x(97)00118-2
Google Scholar
[28]
T. Sourisseau, E. Chauveau, B. Baroux, Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media. Corrosion Science, 47 (2005) 1097-1117.
DOI: 10.1016/j.corsci.2004.05.024
Google Scholar
[29]
A.S. Hamdy, E. El-Shenawy, T. El. Bitar, Electrochemical Impedance Spectroscopy Study of the Corrosion Behavior of Some Niobium Bearing Stainless Steels in 3. 5% NaCl, International Journal of Electrochemical Science, 1 (2006) 171-180.
DOI: 10.1016/j.matlet.2006.10.043
Google Scholar
[30]
J.H. Potgieter, Corrosion of Passive Alloys: The effect of nobel additions in : Tony, J. A. Richardson (Eds), Shreir's Corrosion Elsevier, Oxford, 2010, pp.2224-2249.
DOI: 10.1016/b978-044452787-5.00188-8
Google Scholar
[31]
T. Hong, M. Nagumo, Effect of surface roughness on early stages of pitting corrosion of Type 301 stainless steel, Corrosion Science, 39 (1997) 1665-1672.
DOI: 10.1016/s0010-938x(97)00072-3
Google Scholar
[32]
K. Sasaki, G.T. Burstein, The generation of surface roughness during slurry erosion- corrosion and its effect on the pitting potential, Corrosion Science, 38 (1996) 2111-2120.
DOI: 10.1016/s0010-938x(96)00066-2
Google Scholar
[33]
G.T. Burstein, P.C. Pistorius, Surface Roughness and the Metastable Pitting of Stainless Steel in Chloride solutions, Corrosion, 51 (1995) 380-385.
DOI: 10.5006/1.3293603
Google Scholar
[34]
R. Stefec, F. Franz, A study of the pitting corrosion of cold-worked stainless steel, CorrosionScience, 18 (1978) 161-168.
DOI: 10.1016/s0010-938x(78)80086-9
Google Scholar
[35]
F. Ruel, P. Volovitch, L. Peguet, A. Gaugain, K. Ogle: submitted to Corrosion (2013).
Google Scholar
[36]
L. Felloni, S. Sostero Traverso, G.L. Zucchini, G.P. Cammarota, Investigation on the second anodic current maximum on the polarization curves of commercial stainless steels in sulphuric acid, Corrosion Science, 13 (1973) 773-789.
DOI: 10.1016/s0010-938x(73)80015-0
Google Scholar
[37]
M.B. Rockel, Interpretation of the Second Anodic Current Maximum on Polarization Curves of Sensitized Chromium Steels in 1N H2 SO4, Corrosion, 27 (1971) 95-103.
DOI: 10.5006/0010-9312-27.3.95
Google Scholar
[38]
A.A. Hermas, M.S. Morad, K. Ogura, A correlation between phosphorous impurity in stainless steel and a second anodic current maximum in H2SO4, Corrosion Science, 41 (1999) 2251-2266.
DOI: 10.1016/s0010-938x(99)00046-3
Google Scholar
[39]
V. Randle, The coincidence site lattice and the sigma enigma, Materials Characterization, 47(2001) 411-416.
DOI: 10.1016/s1044-5803(02)00193-6
Google Scholar
[40]
V. Randle, Sigma-Boundary Statistics by Length and Number, Interface Science, 10 (2002) 271-277.
Google Scholar
[41]
V. Randle, The influence of annealing twinning on microstructure evolution, Journal of Materials Science, 40 (2005) 853-859.
DOI: 10.1007/s10853-005-6501-8
Google Scholar
[42]
V. Randle, Twinning-related grain boundary engineering, Acta Materialia, 52 (2004) 4067-4081.
DOI: 10.1016/j.actamat.2004.05.031
Google Scholar