[1]
M. H. Abdullah, et al., Nanostructured TiO2 photoanode prepared through sonication of P25/sol-gel for dye-sensitized, ICEDSA International Conference, (2011) 318-321.
DOI: 10.1109/icedsa.2011.5959099
Google Scholar
[2]
S. Oda, et al., Sol-gel-derived titania-hydroxypropylcellulose hybrid thin films of high refractive indices: solution components affecting the refractive index and uncracking critical thickness, Journal of Sol-Gel Science and Technology, 61 (2012) 484-493
DOI: 10.1007/s10971-011-2649-7
Google Scholar
[3]
L. N. Ismail, et al., Dielectric and physical properties of PMMA:TiO2 thin films by varying TiO2 concentration, Humanities, Science and Engineering Research (SHUSER), 2012 IEEE Symposium, (2012) 259-262.
Google Scholar
[4]
W. Zhou, et al., Fabrication of TiO2 nanoparticles loaded on coal fly ash composite with enhanced photocatalytic activity, Journal of Nanoscience and Nanotechnology, 12 (2012) 4658-4663.
DOI: 10.1166/jnn.2012.6417
Google Scholar
[5]
D. Hocine, et al., Improved efficiency of multicrystalline silicon solar cells by TiO2 antireflection coatings derived by APCVD process, Materials Science in Semiconductor Processing, 16 (2013)113-117.
DOI: 10.1016/j.mssp.2012.06.004
Google Scholar
[6]
Y. Tanaka, et al.,Femtosecond laser near-field ablation mediated with mie resonance scattering by high dielectric constant particles with small size parameter, Appl. Phys. Lett. 96 (2010) 1336-1342.
DOI: 10.2351/1.5061981
Google Scholar
[7]
H. Liu, et al., Photocatalysis property of titania-based thin films with covalent grafting PANi as sensitizer, Advanced Materials Research, 549 (2012) 470-473.
DOI: 10.4028/www.scientific.net/amr.549.470
Google Scholar
[8]
S. B. Z. Fazlinashatul, et al., Solvent effects on the electrical and optical properties of nanocomposited MEH-PPV:TiO 2 films for organic solar cells application, Advanced Materials Research, 364 (2012) 86-89.
DOI: 10.4028/www.scientific.net/amr.364.86
Google Scholar
[9]
S. Zhang, et al., Design of H3PW12O40/TiO2 and Ag/H3PW12O40/TiO2 film-coated optical fiber photoreactor for the degradation of aqueous rhodamine B and 4-nitrophenol under simulated sunlight irradiation, Chemical Engineering Journal, 200 (2012) 300-309.
DOI: 10.1016/j.cej.2012.06.060
Google Scholar
[10]
K. Miller, et al., Memristive Behavior in Thin Anodic Titania, Electron Device Letters, IEEE, 31(2010) 737-739.
DOI: 10.1109/led.2010.2049092
Google Scholar
[11]
Z. Aznilinda, et al., Effect of Plasma Treatment on Memristive Behavior of Sputtered Titania, Presented at NANOSMAT 2012 conference at Czech Republic, (SEPT 2012) unpublished.
Google Scholar
[12]
S. H. Nam, et al., Growth behavior of titanium dioxide thin films at different precursor temperatures, Nanoscale Research Letters, 7 (2012) 1-6.
DOI: 10.1186/1556-276x-7-89
Google Scholar
[13]
Q. Xia, et al., Self-Aligned Memristor Cross-Point Arrays Fabricated with One Nanoimprint Lithography Step, Nano Letters, 10 (2010) 2909-2914.
DOI: 10.1021/nl1017157
Google Scholar
[14]
N. Gergel-Hackett, et al., A Flexible Solution-Processed Memristor, Electron Device Letters, IEEE, 30 (2009) 706-708.
DOI: 10.1109/led.2009.2021418
Google Scholar
[15]
L. Ying-Tao, et al., A low-cost memristor based on titanium oxide, Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference, (2010) 1148-1150.
DOI: 10.1109/icsict.2010.5667881
Google Scholar
[16]
Z. Aznilinda, et al., Physical characteristic of room-temperature deposited TiO2 thin films by RF magnetron sputtering at different RF power, Humanities, Science and Engineering Research (SHUSER), 2012 IEEE Symposium (2012) 685-689.
DOI: 10.1109/shuser.2012.6268904
Google Scholar
[17]
C. Li, et al., ZnO thin film stoichiometry influent by working gas during radio frequency magnetron sputtering, Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2012 19th International Workshop, (2012) 239-242.
DOI: 10.23919/am-fpd52126.2021.9499209
Google Scholar
[18]
N. S. M. Sauki, et al., Substrate temperature dependence of nanoparticle ZnO thin films deposited on flexible substrates by RF magnetron sputtering, Enabling Science and Nanotechnology (ESciNano), 2012 International Conference, (2012) 1-2.
DOI: 10.1109/escinano.2012.6149676
Google Scholar
[19]
P. Singh and D. Kaur, Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering, Physica B: Condensed Matter, 405 (2010) 1258-1266.
DOI: 10.1016/j.physb.2009.11.061
Google Scholar
[20]
L. Zhang, et al., Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films, Solar Energy Materials and Solar Cells, 93 (2009) 114-118.
DOI: 10.1016/j.solmat.2008.09.002
Google Scholar
[21]
A. Paul and J. Wingbermühle, Surface morphology for ion-beam sputtered Al layer with varying sputtering conditions, Applied Surface Science, 252 (2006) 8151-8155.
DOI: 10.1016/j.apsusc.2005.10.056
Google Scholar
[22]
I. Petrov, et al., Microstructural evolution during film growth, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21( 2003) S117-S128.
DOI: 10.1116/1.1601610
Google Scholar