First-Principles Study on Chemical Bonding Characteristics between Cr and Single-Walled Silicon Nanotubes

Article Preview

Abstract:

The adsorption energy and structural properties of Cr doped armchair (5, 5) single-walled silicon or Carbon nanotubes are investigated in detail by the first-principles theory. It is found that Cr atom above on hole position is most energetically favorable for SWSiNTs, which means that Cr atom is prone to absorb on Silicon nanotubes than Carbon nanotubes. Structural analyses suggest that Cr adsorption in silicon nanotubes induces the dehybridization of mixed sp2-sp3 hybrid orbital and the subsequent formation of sp3-like orbital. That enhances the adsorption energy of silicon nanotubes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 798-799)

Pages:

30-34

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Nature 354 (1991) 56-58.

Google Scholar

[2] Andreas Mavrandonakis, George E. Froudakis, Antonis Andriotis and Madhu Menon, Appl. Phys. Lett. 89 (2006) 123126-123128.

DOI: 10.1063/1.2221418

Google Scholar

[3] Peter Deák, Adam Buruzs, Adam Gali, and Thomas Frauenheim, Phys. Rev. Lett. 96 (2006) 236803-236806.

Google Scholar

[4] Nicolas Keller, Cuong Pham-Huu, Gabrielle Ehret, Valérie Keller, Marc J. Ledoux, Carbon 41 (2003) 2131-2139.

DOI: 10.1016/s0008-6223(03)00239-2

Google Scholar

[5] A. Mavrandonakis, George E. Froudakis, M. Schnell, Nano Lett. 3 (2003) 1481-1484.

Google Scholar

[6] G Alfieri, T Kimoto, Nanotechnology 20 (2009) 285703-285708.

Google Scholar

[7] Madhu Menon, Ernst Richter, Phys. Rev. B 69 (2004) 115322-115325.

Google Scholar

[8] C. L. Xu, B. Q. Wei, R. Z. Ma, J. Liang, X. K. Ma and D. H. Wu, Carbon 37 (1999) 855-858.

Google Scholar

[9] K. M. Kumar, V. Kripeshi and A. A. O. Tay, J. Alloys compd 450 (2008) 229-237.

Google Scholar

[10] M. R. Piggott, Carbon 27(1989) 657-662.

Google Scholar

[11] C. C. Poteet and I. W. Hall, Mater. Sci. Eng. A 222 (1997) 35-44.

Google Scholar

[12] S. Hong and S. Myung, Nature Nanotech 2 (2007) 207-208.

Google Scholar

[13] Y. Tang, H. cong, R. Zhong and H. M. Cheng, Carbon 42 (2004) 3260-3262.

Google Scholar

[14] Y. H. wang, Y. N. Li, J. Lu, J. B. Zang and H. Huang, Nanotechnology 17 (2006) 3817-3821.

Google Scholar

[15] Y. Chen, K. Balani and A. Agarwal, Appl. Phys. Lett 91(2007) 319031-319033.

Google Scholar

[16] C. F. Deng, D. Z. Wang, X. X. Zhang and Y. X. Ma, Mater. Lett. 61 (2007) 3229-3231.

Google Scholar

[17] Oksiuta, Zbigniew,JOURNAL OF MATERIALS SCIENCE 48(2013)4801-4805.

Google Scholar

[18] Nikulin. SA, Rogachev. SO, Khatkevich. VM, Rozhnov. AB, Nechaykina. TA, JOURNAL OF ALLOYS AND COMPOUNDS 524 (2013) 114-116.

DOI: 10.1016/j.jallcom.2013.02.162

Google Scholar

[19] Tatsumi Ishihara, Masashi Nakasu, Masaki Yoshio, Hiroyasu Nishiguchi, Yusaku Takita, Jounrnal of Power Sources 146 (2005)161-165.

DOI: 10.1016/j.jpowsour.2005.03.110

Google Scholar

[20] M. zhang, Y.H. Kan, O.J. zang, Z.M. Su, R.S. Wang, Chem. Phys. Lett 379 (2003) 81-86.

Google Scholar

[21] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561.

Google Scholar

[22] G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251-14269.

Google Scholar

[23] G. Kresse, J. Furthm€uller, Comput. Mater. Sci. 6 (1996)15-50.

Google Scholar

[24] V. Milman, B. Winkler, J.A. White, Int. J. Quantum. Chem. 7 7 (2000) 895-910.

Google Scholar

[25] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.

Google Scholar

[26] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892-7895.

Google Scholar

[27] H.J. Monkhorst, J. D. Pack, Phys. Rev. B (1976) 5188-5192.

Google Scholar

[28] Vadym V. Kulish, Man-Fai Ng, Oleksandr I. Malyi, Ping Wu, and Zhong Chen, ChemPhysChem 14 (2013) 1161-1167.

Google Scholar