Sequences and Series of Functions on Fractal Space

Article Preview

Abstract:

In the paper, we define the convergence of sequences and series of functions on fractal space. Some properties for convergence of sequences and series of functions also are considered .

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 798-799)

Pages:

765-768

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Carpinteri, B. Cornetti, K. M. Kolwankar, Calculation of the tensile and . exural strength ofdisordered materials using fractional calculus, Chaos, Solitons, Fractals, 21, 623. 632(2004).

DOI: 10.1016/j.chaos.2003.12.081

Google Scholar

[2] A.V. Dyskin, E¤ective characteristics and stress concentration materials with self-similarmicrostructure, Int. J. Sol. Struct., 42, 477. 502(2005).

Google Scholar

[3] K.M. Kolwankar, A.D. Gangal, Local fractional Fokker. Planck equation, Phys. Rev. Lett., 80, 214. 217(1998).

DOI: 10.1103/physrevlett.80.214

Google Scholar

[4] X.J. Yang, Local fractional partial di¤erential equations with fractal boundary problems, Adv. Comput. Math. Appl., 1(1), 60. 63(2012).

Google Scholar

[5] A. Parvate, A. D. Gangal, Fractal di¤erential equations and fractal-time dynamical systems, Pramana J. Phys., 64 (3), 389-409 (2005).

DOI: 10.1007/bf02704566

Google Scholar

[6] X.J. Yang, M.K. Liao, J.W. Chen, A novel approach to processing fractal signals using theYang-Fourier transforms, Procedia Eng., 29, 2950. 2954(2012).

DOI: 10.1016/j.proeng.2012.01.420

Google Scholar

[7] X.J. Yang, Generalized Sampling Theorem for Fractal Signals, Adv. Digital Multimedia, 1(2), 88. 92(2012).

Google Scholar

[8] Thale, Christoph, Further remarks on mixed fractional Brownian motion, Appl. Math. Sci., 38 (3), 1885 . 1901(2009).

Google Scholar

[9] W. P. Zhong, F. Gao, Application of the Yang-Laplace transforms to solution to nonlinearfractional wave equation with local fractional derivative. In: Proc. of the 2011 3rd Interna-tional Conference on Computer Technology and Development, ASME, 2011, pp.209-213.

DOI: 10.1115/1.859919.paper37

Google Scholar

[10] Y. Guo, Local fractional Z transform in fractal space, Adv. Digital Multimedia, 1(2), 96. 102(2012).

Google Scholar

[11] W.P. Zhong, F. Gao, X.M. Shen, Applications of Yang-Fourier transform to local Fractionalequations with local fractional derivative and local fractional integral, Adv. Mat. Res., 416, 306. 310 (2012).

DOI: 10.4028/www.scientific.net/amr.461.306

Google Scholar

[12] X.J. Yang, A short introduction to Yang-Laplace Transforms in fractal space, Adv. Info. Tech. Management, 1(2), 38. 43(2012).

Google Scholar

[13] W. P. Zhong, F. Gao, Application of the Yang-Laplace transforms to solution to nonlinearfractional wave equation with local fractional derivative. In: Proc. of the 2011 3rd Interna-tional Conference on Computer Technology and Development, ASME, 2011, p.209.

DOI: 10.1115/1.859919.paper37

Google Scholar

[14] X.J. Yang, The discrete Yang-Fourier transforms in fractal space, Adv. Electrical Eng. Sys., 1(2), 78. 81(2012).

Google Scholar

[15] X.J. Yang, A new viewpoint to the discrete approximation discrete Yang-Fourier transformsof discrete-time fractal signal, ArXiv: 1107. 1126v1[math-ph], (2011).

Google Scholar

[16] X.J. Yang, Fast Yang-Fourier transforms in fractal space, Adv. Intelligent Trans. Sys., 1(1), 25. 28(2012).

Google Scholar

[17] G. -S. Chen, The local fractional Stieltjes Transform in fractal space, Advances in Intelligent Transportation Systems, 1(1)(2012)29-31.

Google Scholar

[18] X. J Yang, Local Fractional Integral Transforms, Prog. in Nonlinear Sci., 4, 1. 225(2011).

Google Scholar

[19] X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong, (2011).

Google Scholar

[20] X.J. Yang, Local fractional Fourier analysis, Adv. Mech. Eng. Appl., 1(1), 12. 16(2012).

Google Scholar

[21] G. -S. Chen , Local fractional Mellin transform in fractal space, Advances in Electrical Engineering , 1(2)(2012)89-95.

Google Scholar

[22] G. -S. Chen, Mean Value Theorems for Local Fractional Integrals on Fractal Space, Advances in Mechanical Engineering and its Applications, 1(1) (2012)5-8.

Google Scholar

[23] G. -S. Chen, Local fractional Improper imtegral in fractal space, Advances in Information Technology and Management, 1(1) (2012)4-8.

Google Scholar

[24] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, (2012).

Google Scholar

[25] X. J. Yang, Local fractional integral transforms, Progress in Nonlinear Science, vol. 4, p.1–225, (2011).

Google Scholar