[1]
T.K. Gupta, Application of zinc oxide varistors, J. Am. Ceram. Soc. 73 (1990) 1817–1840.
Google Scholar
[2]
H. Yoshida, T. Shimizu, C. Murata, T. Hattori, Highly dispersed zinc oxide species on silica as active sites for photoepoxidation of propene by molecular oxygen, J. Catal. 220 (2003) 226–232.
DOI: 10.1016/s0021-9517(03)00292-6
Google Scholar
[3]
U. Ozgur, I.A. Ya, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, Appl. Phys. 98 (2005) 041301.
DOI: 10.1063/1.1992666
Google Scholar
[4]
C. Klingshirn, ZnO: from basics towards applications, J. Phys, Status Solidi B 244 (2007) 3027–3073.
DOI: 10.1002/pssb.200743072
Google Scholar
[5]
A.A. Khodja, T. Sehili, J.F. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions, J. Photochem. Photobiol. A: Chem. 141 (2001) 231–239.
DOI: 10.1016/s1010-6030(01)00423-3
Google Scholar
[6]
R. Comparelli, E. Fanizza, M.L. Curri, UV-induced photocatalytic degradation of azo dyes by organiccapped ZnO nanocrystals immobilized onto substrates, Appl. Catal. B: Environ. 60 (2005) 1–11.
DOI: 10.1016/j.apcatb.2005.02.013
Google Scholar
[7]
C.C. Chen, Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions, J. Mol. Catal. A: Chem. 264 (2007) 82–92.
DOI: 10.1016/j.molcata.2006.09.013
Google Scholar
[8]
S. Rodriguez Couto, A. Dominguez, A. Sanroman, Photocatalytic degradation of dyes in aqueous solution operating in a fluidised bed reactor, Chemosphere 46 (2002) 83–86.
DOI: 10.1016/s0045-6535(01)00130-8
Google Scholar
[9]
N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol. A: Chem. 162 (2004) 317–322.
DOI: 10.1016/s1010-6030(03)00378-2
Google Scholar
[10]
S. Sakthivel, B. Neppolian, M.V. Shankar, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, J. Sol. Energ. Mater. Sol. Cells 77 (2003) 65–82.
DOI: 10.1016/s0927-0248(02)00255-6
Google Scholar
[11]
B. Baruwati, D.K. Kumar, S.V. Manorama, Hydrothermal synthesis of highly crystalline ZnO nanoparticles: a competitive sensor for LPG and EtOH, J. Sens. Actuators B: Chem. 119 (2006) 676–682.
DOI: 10.1016/j.snb.2006.01.028
Google Scholar
[12]
K.M. Parida, S.S. Dash, D.P. Das, Chemical characterization and photocatalytic activity of zinc oxide prepared by various methods, J. Colloid Interf. Sci. 298 (2006) 787–793.
DOI: 10.1016/j.jcis.2005.12.053
Google Scholar
[13]
O.W. Perez-Lopez, A.C. Farias, N.R. Marcilio, J.M.C. Bueno, The catalytic behavior of zinc oxide prepared from various precursors and by different methods, J. Mater. Res. Bull. 40 (2005) 2089–(2099).
DOI: 10.1016/j.materresbull.2005.07.001
Google Scholar
[14]
J.E. Rodriguez-Paez, A.C. Caballero, M. Villegas, Controlled precipitation methods: formation mechanism of ZnO nanoparticles, J. Eur. Ceram. Soc. 21 (2001) 925–930.
Google Scholar
[15]
Z. R. Tian, A. V. James, J. Liu, Complex and oriented ZnO nanostructures, J. Nat. Mater. 17(2003): 821 – 826.
Google Scholar
[16]
T. R. ZHANG, W. J. DONG, K.B. MARY, Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites, J. Am. Chen. Soc. 128(2006) 10960-10968.
DOI: 10.1021/ja0631596
Google Scholar
[17]
Z. LI, Y. XIONG, Y. XIE, Selected-control Synthesis of ZnO Nanowlres and Nanoreds Via a PEG-assisted Route, Ino. Chem. 42(2003) 8105-8109.
DOI: 10.1021/ic034029q
Google Scholar
[18]
Y. ZHENG, Y. A. ZHANG, C. X. WU, Study on Preparation and Photoeletric Properties of ZnO Nanorods, J. Synthetic. Crystals. 63(2011) 645-650.
Google Scholar