Constitutive Equation of Mg-3.5Zn-0.6Y-0.5Zr Alloy under Hot Compression Deformation

Article Preview

Abstract:

The hot deformation behavior of Mg-3.5Zn-0.6Y-0.5Zr alloy was investigated by compressive tests of strain rate ranges of 0.002~1 s-1 and deformation temperature ranges of 300~450 °C using a Gleeble 1500D thermal simulator. The flow stresses in different deformation conditions are measured. The results show that flow stress is significantly affected by both deformation temperature and strain rate, the flow stress increases with increase in strain rate and decreases in deformation temperature during the hot compression process. The constitutive equation established on the basis of data of activation energy and stress exponent is a hyperbolic sine function.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-275

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Liu, J.H. Zhang, L.L. Rokhlin, F.M. Elkin, D.X. Tang, J. Meng, Microstructures and mechanical properties of extruded Mg-8Gd-0. 4Zr alloys containing Zn, Mater. Sci. Eng. A 505 (2009) 13-19.

DOI: 10.1016/j.msea.2008.12.023

Google Scholar

[2] Y.B. He, Q.L. Pan, Q. Chen, Z.Y. Zhang, X.Y. Liu, W.B. Li, Modelling of strain hardening and dynamic recrystallization of ZK60 magnesium alloy during hot deformation, T. Nonferr. Metal. Soc. 22 (2012) 246-254.

DOI: 10.1016/s1003-6326(11)61167-9

Google Scholar

[3] X.Y. Yang, H. Miura, T. Sakai, Recrystallization behavior of fine-grained magnesium alloy after hot deformation, T. Nonferr. Metal. Soc. 17 (2007) 1139-1142.

DOI: 10.1016/s1003-6326(07)60239-8

Google Scholar

[4] E. Cerri, P. Leo, P.P. De Marco, Hot compression behavior of the AZ91 magnesium alloy produced by high pressure die casting, J. Mater. Process. Tech. 189 (2007) 97-106.

DOI: 10.1016/j.jmatprotec.2007.01.010

Google Scholar

[5] W.N. Tang, R.S. Chen, E. H. Han, Superplastic behaviors of a Mg-Zn-Y-Zr alloy processed by extrusion and equal channel angular extrusion, J. Alloy Compd. 477 (2009) 636-643.

DOI: 10.1016/j.jallcom.2008.10.089

Google Scholar

[6] A. Sing, M. Nakamura, M. Watanabe, A. Kato, A.P. Tsai, Quasicrystal strengthened Mg-Zn-Y alloys by extrusion, Scripta Mater. 49 (2003) 417-422.

DOI: 10.1016/s1359-6462(03)00305-1

Google Scholar

[7] B.S. Wang, R.L. Xin, G.J. Huang, X.P. Chen, Q. Liu, Hot-deformation behaviors of AZ31 alloys with different initial states, T. Nonferr. Metal. Soc. 18 (2008) s145-s149.

DOI: 10.1016/s1003-6326(10)60191-4

Google Scholar

[8] X. Zhao, K. Zhang, X.G. Li, Y.J. Li, Q.B. He, J.F. Sun, Deformation behavior and dynamic recrystallization of Mg-Y-Nd-Gd-Zr alloy, J. Rare earth. 26 (2008) 846-850.

DOI: 10.1016/s1002-0721(09)60019-3

Google Scholar

[9] C.M. Sellars, W.J. Tegart, G. Mc, La relation enter la resistance structure Dans le deformation a Chaud, Mem. Sci. Rev. Metall. 63 (1966) 731-746.

Google Scholar

[10] H. Takuda, Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures, J. Mater. Process. Tech. 80-81 (1998) 513-516.

DOI: 10.1016/s0924-0136(98)00154-x

Google Scholar