Effect of Anodization Process on Morphology of Nickel Coating

Article Preview

Abstract:

In this article we address the process perspective of anodization for fabrication of nickel coating materials. In this work, we also report the mechanical properties and morphology of coating materials with various parameters. We investigated the effect of temperature and plating time with 0.3 (A/cm3) of current density. Light microscopes, Scanning Electron Microscopy and Hardness tester were used to confirm morphology and hardness of target object, respectively. In general it was observed that anodization process also affected on properties of target object. The hardness of target object with anodization process will be increased in first period and slightly decreased with high temperature and longer plating time. The chemical etching treatment had an impact on the morphological features of the AAO templates lead to morphological features of nickel coating materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-118

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Lu, D. Shen, J. Zhang, J. Song, L. Li, Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum, Applied Surface Science. 257 (2011) 4144–4150.

DOI: 10.1016/j.apsusc.2010.11.187

Google Scholar

[2] P. Haoping, S. Xuping, L. Zhi, W. Jianhua, W. Changjun, T. Hao, L. Xiaofeng, Synergistic effect of Cu and Si on hot-dipping galvalume coating, Surface & Coatings Technology. 206 (2012) 4329–4334.

DOI: 10.1016/j.surfcoat.2012.01.048

Google Scholar

[3] T. Siwach, O. Masahiro, Electroless nickel plating on polypropylene via hydrophilic modification and supercritical carbon dioxide Pd-complex infusion, J. of Supercritical Fluids. 69 (2012) 117– 123.

DOI: 10.1016/j.supflu.2012.06.002

Google Scholar

[4] K. B. Vijaya, T. Harjyoti, U. Ramgopal, K P. Mihir, Effect of process parameters on electroless plating and nickel-ceramic composite membrane characteristics, Desalination. 268 (2011) 195–203.

DOI: 10.1016/j.desal.2010.10.025

Google Scholar

[5] A. D. George, Modern Electroplating, John Wiley & Sons, Inc. (2010) 79-80.

Google Scholar

[6] N. V. Mandich, H. Geduld, Understanding and Troubleshooting Decorative Nickel Electroplating Systems-Part I: Introduction and Brightness Problems, Metal finishing. (2002) 83-91.

DOI: 10.1016/s0026-0576(02)80160-x

Google Scholar

[7] S. Fumitaka, K. Keisuke, N. Yuzuru, K. Koichi, S. Yuishi, Nickel Electroplating Bath Using Malic Acid as a Substitute Agent for Boric Acid, Metal finishing. (2007) 34-40.

DOI: 10.1016/s0026-0576(07)80545-9

Google Scholar

[8] D. Tadashi, M. Kazunari, Bright Nickel Plating from Nickel Citrate Electroplating Baths, Tokyo Metropolitan Industrial Technology Research Institute. (2004).

Google Scholar

[9] L.S. Donald, Electroplating Nickel/Chromium for the Automotive Industry, Metal finishing. (1997).

Google Scholar

[10] W. Sheng-Chang, J. W. Wen-Cheng, Kinetics of electroplating process of nano-sized ceramic particle/Ni composite, Materials Chemistry and Physics. 78 (2003) 574–580.

DOI: 10.1016/s0254-0584(01)00564-8

Google Scholar

[11] Z. Abdel-Hamid, Materials Science Communication Improving the throwing power of nickel electroplating baths, Materials Chemistry and Physics. 53 (1998) 235-238.

DOI: 10.1016/s0254-0584(97)02070-1

Google Scholar

[12] W. Chao, Z. Yunbo, R. Weili, L. Zuosheng, R. Zhongming, J. Jing, J. Airong, Effects of parallel magnetic field on electrocodeposition behavior of Ni/nanoparticle composite electroplating, Applied Surface Science. 254 (2008) 5649–5654.

DOI: 10.1016/j.apsusc.2008.03.072

Google Scholar

[13] W. Bensalah1, M. Feki, M. Wery, H.F. Ayedi, Thick and Dense Anodic Oxide Layers Formed on Aluminum in Sulphuric Acid Bath, J. Mater. Sci. Technol. 26(2) (2010) 113-118.

DOI: 10.1016/s1005-0302(10)60018-7

Google Scholar

[14] R. Zhang , K. Jiang, G. Ding, Surface morphology control on porous anodic alumina in phosphoric acid, Thin Solid Films. 518 (2010) 3797–3800.

DOI: 10.1016/j.tsf.2010.01.004

Google Scholar

[15] N. M. Yakovleva, L. Anicai, A. N. Yakovlev, L. Dima, E. Ya. Khanina, E. A. Chupakhina, Structure and Properties of Anodic Aluminum Oxide Films Produced in HNO3 Solutions, Inorganic Materials. 39 (2003) 50–56.

DOI: 10.1023/a:1021839219347

Google Scholar

[16] J.Zhang, J. E. Kielbasa, D. L. Carroll, Controllable fabrication of porous alumina templates for nanostructures synthesis, Materials Chemistry and Physics. 122 (2010) 295–300.

DOI: 10.1016/j.matchemphys.2010.02.023

Google Scholar

[17] C. Tso-Fu Mark, S. Masato, Function and mechanism of supercritical carbon dioxide emulsified electrolyte in nickel electroplating reaction, Surface & Coatings Technology. 205 (2011) 3890–3899.

DOI: 10.1016/j.surfcoat.2011.02.004

Google Scholar