First-Principles Investigation on Elastic Constants of TiN under High Pressure

Article Preview

Abstract:

Elastic constants of NaCl-type TiN under pressure were investigated by first-principles calculations within both local density approximation (LDA) and Perdew-Burke-Ernzerhof generalized-gradient approximation (PBE-GGA). At ambient pressure, the calculated lattice parameter, bulk modulus, and elastic constants of NaCl-type TiN are in well agreement with other available values. Under pressure, all elastic constants, C11, C12, and C44, are found to increase with pressure. C11, which is related to the longitudinal distortion, increases rapidly with pressure while C12 and C44 which are related to the transverse and shear distortion, respectively, are much less sensitive to pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-113

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markett, J.E. Greene, Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness, J. Appl. Phys. 62 (1987) 481-484.

DOI: 10.1063/1.339770

Google Scholar

[2] M. Wittmer, H. Melchior, Applications of TiN thin films in silicon device technology, Thin Solid Films. 93, (1982) 397-405.

DOI: 10.1016/0040-6090(82)90145-6

Google Scholar

[3] R.I. Hegde, R.W. Fiordalice, E.O. Travis, and P. J. Tobin, Thin film properties of low‐pressure chemical vapor deposition TiN barrier for ultra‐large‐scale integration applications, J. Vac. Sci. Technol. B. 11 (1993) 2326-2328.

DOI: 10.1116/1.586931

Google Scholar

[4] J.B. Price, J.O. Borland, S. Selbrede, Properties of chemical-vapor-deposited titanium nitride, Thin Solid Films. 236 (1993) 311-318.

DOI: 10.1016/0040-6090(93)90688-l

Google Scholar

[5] R. Fix, R.G. Gordon, D.M. Hoffman, Chemical vapor deposition of titanium, zirconium, and hafnium nitride thin films, Chem. Mater. 3 (1991) 1138-1148.

DOI: 10.1021/cm00018a034

Google Scholar

[6] R. Ahuja, O. Eriksson, J.M. Wills, B. Johansson, Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO, Phys. Rev. B. 53 (1996) 3072-3079.

DOI: 10.1103/physrevb.53.3072

Google Scholar

[7] J.G. Zhao, L.X. Yang, Y. Yu, et al., Isostructural phase transition of TiN under high pressure, Chin. Phys. Lett. 22 (2005) 1199-1201.

Google Scholar

[8] Ke Liu, Xiao-Lin Zhou, Hai-Hua Chen, Lai-YuLu, Structural and elastic properties of TiN under high pressure, Physica B: Condensed Matter. 407 (2012) 3617-3621.

DOI: 10.1016/j.physb.2012.05.038

Google Scholar

[9] D.C. Wallace, Thermodynamics of Crystals, Wiley, New York, 1972.

Google Scholar

[10] G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[11] D.M. Ceperley, B.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 45 (1980) 566–569.

DOI: 10.1103/physrevlett.45.566

Google Scholar

[12] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[13] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B. 50 (1994) 17953–17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[14] J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188 –5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[15] F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244-247.

DOI: 10.1073/pnas.30.9.244

Google Scholar

[16] M. Marlo, V. Milman, Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals, Phys. Rev. B. 62 (2000) 2899- 2907.

DOI: 10.1103/physrevb.62.2899

Google Scholar

[17] N. Schönberg, An X-Ray Investigation on Ternary Phases in the Ta-Me-N Systems (Me = Ti, Cr, Mn, Fe, Co, Ni), Acta Chem. Scand. 8 (1954) 213-220.

DOI: 10.3891/acta.chem.scand.08-0213

Google Scholar

[18] M. Radecka, E. Pamula, A. Trenczek-Zajac, K. Zakrzewska, A. Brudnik, E. Kusior, N.-T.H. Kim-Ngan, A.G. Balogh, Chemical composition, crystallographic structure and impedance spectroscopy of titanium oxynitride TiNxOy thin films, Solid State Ionics. 192 (2011) 693–698.

DOI: 10.1016/j.ssi.2010.07.021

Google Scholar

[19] J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, S. A. Barnett, Elastic constants of single-crystal transition-metal nitride films measured by line-focus acousticmicroscopy J. Appl. Phys. 72 (1992) 1805-1811.

DOI: 10.1063/1.351651

Google Scholar