Cyclic MAM Synthesis of CaMoO4:Er3+/Yb3+ Particles and their Upconversion Photoluminescence Properties

Article Preview

Abstract:

Er3+ doped CaMoO4(CaMoO4:Er3+) and Er3+/Yb3+ co-doped CaMoO4 (CaMoO4:Er3+/Yb3+) particles was successfully synthesized by a cyclic microwave-assisted metathetic (MAM) method, followed by heat-treatment. Well-crystallized UC CaMoO4:Er3+/Yb3+ particles formed after heat-treatment at 600°C for 3 h showed a fine and homogeneous morphology with particle sizes of 1-3 μm. At excitation at 980 nm, CaMoO4:Er3+/Yb3+ particles exhibited a strong 525-nm emission band and a weak 550-nm emission band in the green region, and a weak 655-nm emission band in the red region. The UC intensities of CaMoO4:Er3+/Yb3+ particles were much higher than that of the CaMoO4:Er3+ particles. The Raman spectra of CaMoO4:Er3+ and CaMoO4:Er3+/Yb3+ particles indicated the appearance of additional strong peaks in comparision with that of pure CaMoO4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

36-41

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Wang, G. Abbineni, A. Clevenger, C. Mao, S. Xu, Nanomedicine: Nanotech. Biology, and Medicine Vol. 7 (2011), p.710.

Google Scholar

[2] A. Shalav, B.S. Richards, M.A. Green: Solar Ener. Mat. & Solar Cells Vol 91 (2007), p.829.

Google Scholar

[3] C. Zhang, L. Sun, Y. Zhang, C. Yan: J. Rare Earths Vol. 28 (2010), p.807.

Google Scholar

[4] J. Sun, J. Xian, H. Du: J. Phys. Chem. of Solids Vol. 72 (2011), p.207.

Google Scholar

[5] J. Sun , J. Xian, Z. Xia, H. Du: J. Rare Earths Vol. 28 (2010), p.219.

Google Scholar

[6] V.K. Komarala, Y. Wang, M. Xiao: Chem. Phys. Lett. Vol. 490 (2010), p.189.

Google Scholar

[7] J.H. Ryu, J.W. Yoon, C.S. Lim, W.C. Oh, K.B. Shim: J. Alloys & Comp. Vol. 390 (2005) p.245.

Google Scholar

[8] J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.A. Varela, P.S. Pizani, E. Longo: Chem. Eng. J., Vol. 140 (2008), p.632.

Google Scholar

[9] T. Thongtem, S. Kungwankunakorn, B. Kuntalue, A. Phuruangrat, S. Thongtem: J. Alloys & Comps. Vol. 506 (2010), p.475.

DOI: 10.1016/j.jallcom.2010.07.033

Google Scholar

[10] F. Kang, Y. Hu, H. Wu, G. Ju, Z. Mu, N. Li: J. Rare Earths Vol. 29 (2011), p.837.

Google Scholar

[11] C.S. Lim: J. Lum. Vol. 132 (2012) p.1774.

Google Scholar

[12] C.S. Lim: Mat. Chem. Phys. Vol. 140 (2013), p.154.

Google Scholar

[13] Q. Sun X. Chen, Z. Liu, F. Wang, Z. Jiang, C. Wang: J. Alloys & Comps. Vol. 509 (2012), p.5336.

Google Scholar

[14] V.V. Atuchin, O.D. Chimitova, T.A. Gavrilova, M.S. Molokeev, S. J. Kim, N.V. Surovtsev, B.G. Bazarov, J. Crystal Growth Vol. 318 (2011), p.638.

DOI: 10.1016/j.jcrysgro.2010.09.076

Google Scholar

[15] V.V. Atuchin, V.G. Grossman, S.V. Adichtchev, N.V. Surovtsev, T.A. Gavrilova, B.G. Bazarov, Optical Materials Vol. 34 (2012), p.812.

DOI: 10.1016/j.optmat.2011.11.016

Google Scholar