2DEG Transport Properties in AlGaN/GaN Double Heterostructure HEMT with High In Composition InGaN Channel

Article Preview

Abstract:

AlGaN/InGaN/GaN double heterostructure high electron mobility transistor (HEMT) with In composition from 0.08 to 0.26 were grown by MOCVD. 2DEG density and mobility of different channel In composition were investigated. When In composition below 0.19, 2DEG density increased nearly linearly with In composition, and the mobility decreased a bit. While In composition over 0.19, phase separation became more serious, 2DEG density nearly not changed, and the mobility dropped sharply. A high 2DEG mobility of 1163 cm2/V·s with low sheet resistance of 342Ω/ was obtained with In composition 0.19.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 805-806)

Pages:

1027-1030

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen Z, Pei Y et al, Appl. Phys. Lett. 2009, 94: 112108.

Google Scholar

[2] Chang C T, Hsiao S K, Chang E Y, et al, IEEE Electron. Device Lett. 2009, 30: 213.

Google Scholar

[3] S.L. Rumyantsev, N. Pala, M.S. Shur et al, J. Appl. Phys. 2001, 90: 310.

Google Scholar

[4] Simin G, Hu X, Tarakji A, et al., Jpn. J. Appl. Phys. 2001, 40: L1142.

Google Scholar

[5] N. Okamoto, K. Hoshino, N. Hara et a1., Journal of Crystal Growth 2004, 272: 278.

Google Scholar

[6] V. Adivarahan, M.E. Gaevski, M.M. Islam et al., IEEE transactions on electron devices 2008, 55: 495.

Google Scholar

[7] G. Simin, X. Hu, A. Tarakji, et al, Jpn. J. Appl. Phys., 2001, 40(11A): L1142–L1144.

Google Scholar

[8] W. Lanford, V. Kumar, R. Schwindt, et al, Electronics Letters, 2004, 40: 12.

Google Scholar

[9] J. Xie, J.H. Leach, X. Ni, et al., Appl. Phys. Lett. 2007, 91: 262102.

Google Scholar

[10] N. Okamotoa, K. Hoshino, N. Hara, et. al, J. Crystal. Growth. 2004, 272: 278.

Google Scholar

[11] Swartza C H, Tompkinsa R P, Giles N C, et a1., Journal of Crystal Growth 2004, 269: 29.

Google Scholar

[12] M. Hori, K. Kano, T. Yamaguchi, et al, Phys. Stat. Sol. (b) 2002, 234: 750.

Google Scholar

[13] M. Kurouchi, T. Araki, H. Naoi, et al, Phys. Stat. Sol. (b) 2004, 241: 2843.

Google Scholar

[14] Y. T. Moon, D. J. Kim, J. S. Park, et al, Appl. Phys. Lett. 2001, 79: 599.

Google Scholar

[15] S. Srinivasan, F. Bertram, A. Bell, et al, Appl. Phys. Lett. 2002, 80: 550.

Google Scholar

[16] C.A. Tran, R.F. Karlicek Jr., M. Schurman, et al, J. Crystal Growth 1998, 195: 397.

Google Scholar

[17] C.X. Wang, K. Tsubaki, N. Kobayashi, et. al, Appl. Phys. Lett. 2004, 84: 2313.

Google Scholar