[1]
I.P. Grande, J. Meseguer,G. Alonso, Influence of glass properties on the performance of double-glazed facades[J]. Applied Thermal Engineering 25(2005)3163–3175.
DOI: 10.1016/j.applthermaleng.2005.04.004
Google Scholar
[2]
S.N. Alamri, The temperature behavior of smart windows under direct solar radiation[J], Solar Energy Materials & Solar Cells 93 (2009) 1657–1662.
DOI: 10.1016/j.solmat.2009.05.011
Google Scholar
[3]
B.C. Melo L.B. Silva A.S. Coutinho, Energy efficiency in building installations using thermal insulating materials in northeast Brazil[J]. Energy and Buildings 47(2012)35-43.
DOI: 10.1016/j.enbuild.2011.11.021
Google Scholar
[4]
K.A.R. Ismail, J.R. Henrıquez, Two-dimensional model for the double glass naturally ventilated window[C]. International Journal of Heat and Mass Transfer 48 (2005) 461–475.
DOI: 10.1016/j.ijheatmasstransfer.2004.09.022
Google Scholar
[5]
H. Manz, Numerical simulation of heat transfer by natural convection in cavities of facade elements[J], Energy Build, 35 (2003)305–311.
DOI: 10.1016/s0378-7788(02)00088-9
Google Scholar
[6]
S. Reilly, D. Arasteh, M. Rubin, The effects of infrared absorbing gasses on window heat transfer: a comparison of theory and experiments[J], Solar Energy Mater 20 (1990)277–288.
DOI: 10.1016/0165-1633(90)90060-e
Google Scholar
[7]
K.L. Hsiao, Conjugate Heat Transfer for Free Convection along a Vertical Plate Fin[M], Journal of thermal science 4(2010)337-345.
DOI: 10.1007/s11630-010-0392-y
Google Scholar
[8]
M.A. Bernier, B. Bourret, Effects of glass plate curvature on the U-factor of sealed insulated glazing units[M], ASHRAE Trans 103 (part 1) (1997) 270–277.
Google Scholar
[9]
Y. Zhao, W.P. Goss, D. Curcija, Prediction of the multicellular flow regime of natural convection in fenestration glazing cavities[M], ASHRAE Trans 103 (part 1) (1997) 1009–10209.
Google Scholar
[10]
K. A.R. Ismail, C. Salinas , Non-gray radiative convective conductive modeling of a double glass window with a cavity filled with a mixture of absorbing gases[J], International Journal of Heat and Mass Transfer 49 (2006) 2972–2983.
DOI: 10.1016/j.ijheatmasstransfer.2006.01.051
Google Scholar
[11]
K. A.R. Ismail, C. Salinas, Application of the CW model for the solution of non-gray coupled radiative conductive heat transfer in double glass window with a cavity filled with mixtures of absorbing gases[C], ICHMT International Symposium on Radiative Transfer—Radiation IV, Istanbul. (2004).
DOI: 10.1615/ichmt.2004.rad-4.560
Google Scholar
[12]
Y.X. Zhu, Built Environment(second edition) [M], China Building Industry Press, (2005).
Google Scholar
[13]
J.P. Holman, Heat Transfer[M], People's Education Press, (1981).
Google Scholar
[14]
F.P. Incropera, Fundamentals of Heat and Mass Transfer[M]. Chemical Industry Press, (2011).
Google Scholar
[15]
S.M. Yang W.Q. Tao, Heat Transfer(forth edition) [M], Higher Education Press, (2007).
Google Scholar
[16]
V. P. NicolauI, Determination of Radiative Properties of Commercial Glass[C], The 18th Conference on Passive and Low Energy Architecture.
Google Scholar
[17]
K.A.R. Ismail, C. Salinas, Application of multidimensional scheme and the discrete ordinate method to radiative heat transfer in a twodimensional enclosure with diffusely emitting and reflecting boundary walls[J], J. Quant. Spect. Radiative Transfer 88 (2004).
DOI: 10.1016/j.jqsrt.2004.04.019
Google Scholar
[18]
R. Koch, R. Becker, Evaluation of quadrature schemes for the discrete ordinates method[J],J. Quant. Spect. Radiative Transfer 84(2004) 423–435.
DOI: 10.1016/s0022-4073(03)00260-7
Google Scholar