[1]
Information on http: /www. wrap. org. uk/sites/files/wrap/2%20-%20Composition%20 of%20a%20Tyre%20-%20May%202006. pdf.
Google Scholar
[2]
M.T. Gratkowski. Burning Characteristics of Automotive Tires: Fire Technology (2012), pp.1-13, doi: 10. 1007/s10694-012-0274-9, in press.
Google Scholar
[3]
Z. Wang, K. Li.P. Lambert and Ch. Yang. Identification, characterization and quantitation of pyrogenic polycylic aromatic hydrocarbons and other organic compounds in tire fire products: Journal of Chromatography A Vol. 1139 (2007), pp.14-26.
DOI: 10.1016/j.chroma.2006.10.085
Google Scholar
[4]
ISO 13344: 2004: Estimation of the lethal toxic potency of fire effluents.
Google Scholar
[5]
P.R. Shakya, P. Shrestha, Ch.S. Tamrakar and P.K. Bhattarai. Studies on potential emission of hazardous gases due to uncontrolled open-air burning of waste vehicle tyres and their possible impacts on the environment: Atmospheric Environment Vol. 42 (2008).
DOI: 10.1016/j.atmosenv.2008.04.013
Google Scholar
[6]
A. Lönnermark and P. Blomqvist. Emissions from an automobile fire: Chemosphere Vol. 62 (2006), pp.1043-1056.
DOI: 10.1016/j.chemosphere.2005.05.002
Google Scholar
[7]
J. Martinka, D. Kačíková, E. Hroncová and J. Ladomerský. Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions: Journal of Thermal Analysis and Calorimetry Vol. 110 (2012).
DOI: 10.1007/s10973-012-2261-2
Google Scholar
[8]
A. Tewarson. Ventilation effects on combustion products: Toxicology Vol. 115 (1996), pp.145-156.
DOI: 10.1016/s0300-483x(96)03503-2
Google Scholar
[9]
A.S. Veríssimo, A.M.A. Rocha, M. Costa. Importance of the inlet air velocity on the establishment of flameless combustion in a laboratory combustor: Experimental Thermal and Fluid Science Vol. 44 (2013), pp.75-81.
DOI: 10.1016/j.expthermflusci.2012.05.015
Google Scholar
[10]
M.R. Islama, M.S.H.K. Tushar and H. Haniu. Production of liquid fuels and chemicals from pyrolysis of Bangladeshi bicycle/rickshaw tire wastes: Journal of Analytical and Applied Pyrolysis Vol. 82 (2008), pp.96-109.
DOI: 10.1016/j.jaap.2008.02.005
Google Scholar
[11]
T. Chrebet, K. Balog. Critical rate of thermal decomposition of pure and impregnated lignocellulosic materials: Research papers of Faculty of Materials Science and Technology in Trnava Vol. 18 (2010), pp.109-118.
DOI: 10.2478/v10186-010-0014-2
Google Scholar
[12]
J. Martinka, K. Balog, T. Chrebet, E. Hroncová and J. Dibdiaková. Effect of oxygen concentration and temperature on ignition time of polypropylene: Journal of Thermal Analysis and Calorimetry Vol. 110 (2012), pp.485-487.
DOI: 10.1007/s10973-012-2546-5
Google Scholar
[13]
H. Biteau, A. Fuentes, G. Marlair and J.L. Torero. The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture: Experimental Thermal and Fluid Science Vol. 34 (2010), pp.282-289.
DOI: 10.1016/j.expthermflusci.2009.10.025
Google Scholar
[14]
S.Y. Luo, B. Xiao, Z.Q. Hu, S.M. Liu and Y.W. Guan. Experimental study on oxygen-enriched combustion of biomass micro fuel: Energy Vol. 34 (2009), pp.1880-1884.
DOI: 10.1016/j.energy.2009.07.036
Google Scholar
[15]
Q. Xu, A. Majlingová, M. Zachar, C. Jin and Y. Jiang. Correlation analysis of cone calorimetry test data assessment of the procedure with test of different polymers: Journal of Thermal Analysis and Calorimetry Vol. 110 (2012), pp.65-70.
DOI: 10.1007/s10973-011-2059-7
Google Scholar