Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control

Article Preview

Abstract:

In this paper, based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 805-806)

Pages:

1975-1978

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990) 821-824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[2] R. Aguilar-López, R. Martinez-Guerra, Partial synchronization of different chaotic oscillators using robust PID feedback, Chaos. Solitons & Fractals 33 (2007) 572-581.

DOI: 10.1016/j.chaos.2005.12.042

Google Scholar

[3] X. F. Wang, G. R. Chen, Synchronization in scale-free dynamical networks: robustness and fragility, Int. J. Bifur. Chaos 12 (2002) 187-192.

Google Scholar

[4] R. Mainieri, J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Phys. Rev. Lett. 82 (1999) 3042-3045.

DOI: 10.1103/physrevlett.82.3042

Google Scholar

[5] W. L. He, F. Qian, J. D. Cao, Impulsive synchronization of two nonidentical chaotic systems with time-varying delay, Phys. Lett. A 375 (2011) 498-504.

DOI: 10.1016/j.physleta.2010.11.052

Google Scholar

[6] I. Podlubny, Fractional Differential Equations, Academic Press, New York, (1999).

Google Scholar

[7] M. P. Lazarević,A. M. Spasić, Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach, Mathematical and Computer Modelling 49 (2009) 475-481.

DOI: 10.1016/j.mcm.2008.09.011

Google Scholar

[8] G. R. Chen, T. Ueta, Yet another chaotic attractor, Int. J. Bifurc. Chaos 9 (1999) 1465-1466.

DOI: 10.1142/s0218127499001024

Google Scholar