Research Progress of CO2 Sequestration with Enhanced Gas Recovery

Article Preview

Abstract:

CO2 Sequestration with Enhanced Gas Recovery (CSEGR) is one of the efficient and attractive scenarios to reduce CO2 emission and accelerate gas field to produce more natural gas simultaneously. We review the correlational experiments, simulations and economic feasibility research about technical and economic problems of CSEGR. And the potential of natural gas increase production and CO2 emission reduction in China by CSEGR is calculated. The pilot projects and simulation results show that CSEGR is technically feasible when suitable injection strategies and field management are implemented. However, economic feasibility is available only via policies of carbon credit, allowance and trade. Accurate experimental data would ensure the authenticity of key simulation parameters and reliability of simulations, but the existed experimental data is scarce. More experimental researches should be conducted to obtain a great quantity of accurate data which can make the simulation more close to the actual situation. Accordingly, the pilot projects and large-scale applications of CSEGR could be implemented successfully.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

1075-1079

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IEA. Technology Roadmap: Carbon Capture and Storage in Industrial Applications (2011).

Google Scholar

[2] M. J. Van der Burgt, J. Cantle, V. K. Boutkan: Energy Conversion and Management, Vol. 33(1992), p.603.

Google Scholar

[3] K. Blok, R. H. Williams, R. E. Katofsky, et al: Energy, Vol. 22 (1997), p.161.

Google Scholar

[4] S. M. Benson, L. R. Myer, C. M. Oldenburg, et al: GEO-SEQ Best Practices Manual, Ernest Orlando Lawrence Berkeley National Laboratory, (Berkeley, US, 2004).

DOI: 10.2172/1077125

Google Scholar

[5] C. M. Oldenburg, S. M. Benson: SPE International Petroleum Conference and Exhibition (Villahermosa, Mexico, 2002), SPE 74367.

Google Scholar

[6] C. M. Oldenburg, K. Pruess, S. M. Benson: Energy Fuels, Vol. 15 (2001), p.293.

Google Scholar

[7] B. Van der Meer: Oil & Gas Science and Technology, Vol. 60 (2005), p.527.

Google Scholar

[8] N. Wildgust: IEA GHG Weyburn Midale Monitoring Project PRISM meeting (Regina, Canada, 2009).

Google Scholar

[9] CSLF: CO2 Utilization Options Task Force (2012).

Google Scholar

[10] T. G. Clemens, K. Wit: SIEP-Report (Rijswijk, Netherlands, 2001), SIEP EP5403.

Google Scholar

[11] S. Jikich, D. Smith, W. Sams, et al: SPE Eastern Regional Meeting (Pittsburgh, US, 2003).

Google Scholar

[12] A. Al-Hasami, S. Ren, B. Tohidi: SPE Europec/EAGE Annual Conference (Madrid, Spain, 2005).

Google Scholar

[13] IEA. Energy Technology Analysis-Prospects for CO2 Capture and Storage (Paris, France, 2004).

Google Scholar

[14] National Development and Reform Commission: Natural Gas Development in the 12th Five-year Plan (Beijing, China, 2012). (in Chinese).

Google Scholar

[15] X. Liu, X. Wu, Z. Wang, Q. Xiong: Natural Gas Industry, Vol. 22 (2002), p.1. (in Chinese).

Google Scholar

[16] State Statistics Bureau and Ministry of Environmental Protection. China Statistical Yearbook on Environment 2011. China Statistics Press (2011). (in Chinese).

Google Scholar

[17] L. van der Meer, E. Kreft, C. Geel, et al.: SPE Europec/EAGE Annual Conference ( Madrid, Spain, 2005).

Google Scholar

[18] P. Kubus: SPE International Conference on CO2 Capture, Storage, and Utilization (Louisiana, US, 2010) SPE 139555.

Google Scholar

[19] D. D. Mamora, J. G. Seo: SPE Annual Technical Conference and Exhibition (San Antonio, US, 2002).

Google Scholar

[20] J. G. Seo, D. D. Mamora: Journal of Energy Resources Technology, Vol. 127 (2005), p.1.

Google Scholar

[21] M. Nogueira, D. D. Mamora: Journal of Energy Resources Technology, Vol. 130(2008), p.013301.

Google Scholar

[22] M. C. N. de Mago: Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs [D]. Texas A&M University, (2005).

DOI: 10.2118/94906-stu

Google Scholar

[23] T. J. Hughes, A. Honari, B. F. Graham, et al.: International Journal of Greenhouse Gas Control, Vol. 9 (2012), p.457.

Google Scholar

[24] S. Polak, A. A. Grimstad: Energy procedia, Vol. 1(2009), p.2961.

Google Scholar

[25] D. Rebscher, C. M. Oldenburg: Ernest Orlando Lawrence Berkeley National Laboratory, (Berkeley, US, 2005).

DOI: 10.2172/1077125

Google Scholar

[26] C. Hussen, R. Amin, G. Madden, B. Evans: Journal of Natural Gas Science and Engineering, Vol. 5(2012), p.42.

Google Scholar

[27] C. M. Oldenburg: Energy Conversion and Management, Vol. 48(2007), p.1808.

Google Scholar

[28] T. Clemens, K. Wit: SPE Annual Technical Conference and Exhibition(San Antonio, US, 2002).

Google Scholar

[29] J. G. Seo: Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs [D]. Texas A&M University, (2004).

DOI: 10.2118/81200-ms

Google Scholar

[30] B. Feather, R. A. Archer: 17th Australasian Fluid Mechanics Conference (Auckland, New Zealand, 2010).

Google Scholar

[31] Z. Hou, Y. Gou, J. Taron, et al.: Environmental Earth Sciences, Vol. 67(2012), p.549.

Google Scholar

[32] L. Feng, R. N. Xu, P. X. Jiang: Applied Energy, Vol. 102(2013), p.1314.

Google Scholar

[33] C. M. Oldenburg, S. H. Stevens, S. M. Benson: Energy, Vol. 29(2004), p.1413.

Google Scholar

[34] C. Khan, R. Amin, G. Madden: Energy and Environment Research, Vol. 2(2012), p.65.

Google Scholar