Application of γ Spectra Measurement in the Research of Lake Sediment and Palaeoenvironment

Article Preview

Abstract:

Xigeda Formation layer, which is widely distributed in Panzhihua area, is researched by the method of γ spectrum measurement. Qinglongshan Xigeda Formation profile is measured by the low-background multi-channelγenergy spectrometer in Panzhihua, the change rules of radioactive elements, including URa, Th, K, Ir and Ira on the profile are analyzed in detail. The characteristics and palaeoenvironmental significance of the sediment layer on the profile is researched by combining the geological features. The results show that the contents of radioactive elements in Xigeda Formation profile reduce obviously from the old to the new layer and change regularly and the radioactive characteristics are consistent to the sediment geological features. All these show that the γ spectrum method is a good one for the study of lake sediment and palaeoenvironment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

1676-1681

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Áslaug Geirsdóttir, Jórunn Hardardóttir and Árny E. Sveinbjörnsdóttir. Quaternary Science Reviews , Vol. 19(17-18) (2000), pp.1749-1761.

Google Scholar

[2] Anne Müller. Quaternary Research, , Vol. 55(1) (2001), pp.86-96.

Google Scholar

[3] Robert F. Spielhagen, Karl-Heinz Baumann, Helmut Erlenkeuser, et al. Quaternary Science Reviews, Vol. 23(11-13)(2004), pp.1455-1483.

Google Scholar

[4] Wang Shaowu, Dong Guangrong. Evaluation of environmental evolvement in WestChina(Vol. 1). Beijing: Science publishing house, 2002, pp.1-15. In Chinese.

Google Scholar

[5] ZHAO Qiang , WANG Nai-ang, CHONG Hong-yi,et al. Arid Land Geography, Vol. (01) (2003), pp.1-5.

Google Scholar

[6] Yang Huairen. Quaternary geology. Beijing: higher education publishing house, 1987, pp.1-20. In Chinese.

Google Scholar

[7] Liu Dongsheng. Loess and environment. Beijing: Science publishing house, 1985, pp.336-348. In Chinese.

Google Scholar

[8] Denis Wirrmann, Anne-Marie Sémah, Magali Chacornac-Rault. Quaternary Research, Vol. 66(2)(2006), pp.213-232.

DOI: 10.1016/j.yqres.2006.04.002

Google Scholar

[9] Karin Eusterhues, Hartmut Heinrichs and Jürgen Schneider. Chemical Geology, Vol. 222 (1–2) (2005), pp.1-22.

Google Scholar

[10] Vladimir Torres, Jef Vandenberghe and Henry Hooghiemstra. Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 226, (1-2)(2005), pp.127-148.

DOI: 10.1016/j.palaeo.2005.05.005

Google Scholar

[11] Chen Jing'an, Wan Guojiang, Xu Jingyi. ACTA SEDIMENTOLOGICA SINICA, Vol. 18(3) (2000), pp.341-345. In Chinese.

Google Scholar

[12] Chen Jing'an, Wan Guojiang. ACTA MINERALOGICA SINICA, Vol. 20(2) (2000), pp.112-116. In Chinese.

Google Scholar

[13] LIU Hui-jun, NIE De-xin. Advance in Earth Sciences, Vol. 19(Supl. )(2004), pp.80-83. In Chinese.

Google Scholar

[14] Ji Youliang, Hu Guangming, Zhang Shanwen, et al. Journal of Tongji University (Natural Science), Vol. 32(4) (2004), pp.455-460. In Chinese.

Google Scholar

[15] Xia Juanjuan. Quaternary Sciences,Vol. 4(1996), pp.345-352. In Chinese.

Google Scholar

[16] Huang Junhua, Hu Chaoyong, Zhou Qunfeng, et al. ACTA SEDIMENTOLOGICA SINICA, Vol. 20(3) (2002), pp.442-446. In Chinese.

Google Scholar