Characterization of Physical and Chemical Evaluation on Six Apple Varieties

Article Preview

Abstract:

Physical and chemical characterization of 6 apple varieties (Early Golden Delicious, Jonagold, Hanfu, Ralls, Rainier and Fuji) from China was performed using pattern recognition tools. Measurements were taken on 12 parameters including weigh, colour, fruit firmness, crude fiber, total soluble solids, titration acid, water, Vitamin C, edible rate and juice yield .The results showed that physical and chemical properties existed different variance in apple varieties. The coefficient of variance of 12 properties was from 2.15% to 69.04%. The different apple varieties were investigated by principal component analysis (PCA) and hierarchical cluster analysis (HCA). PCA revealed that the first four components represented 95.13% of the total variability in properties and different apple groups. HCA classified samples into three groups on the basis of the physical and chemical properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

1954-1959

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pavlina D. Drogoudi, Georgios Pantelidis, 2011. Scientia Horticulturae 129: 752–760.

Google Scholar

[2] Shyam Narayan Jha & D. R. Rai & Rajiv Shrama, 2011. J Food Sci Technol.

Google Scholar

[3] RCE No. 1238-(2005).

Google Scholar

[4] GB/T 10651-(2008).

Google Scholar

[5] Suriyan Supapvanich, Jirapon Pimsaga, Panneewan Srisujan, 2011. Food Chemistry 127, 912–917.

DOI: 10.1016/j.foodchem.2011.01.058

Google Scholar

[6] I. Iglesias, G. Echeverrı´, Y. Soria, 2008. Scientia Horticulturae 119 , 32–40.

Google Scholar

[7] A.J. Currie, S. Ganeshanandam, D.A. Noiton, 2000. Euphytica 111, 219-227.

Google Scholar

[8] Ki-Bok Kim, Sangdae Lee, et al, 2009. Postharvest Biology and Tech. , 52 (2009) 44–48.

Google Scholar

[9] G.J. King · C. Maliepaard · J.R. Lynn · F.H. Alston, 2000. 100: 1074–1084.

Google Scholar

[10] Emira Mehinagic, Gaëlle Royer, Ronan Symoneaux, 2004. Postharvest Biology and Technology 34, 257-269.

DOI: 10.1016/j.postharvbio.2004.05.017

Google Scholar

[11] Nikolaos E. Mavroudis , Petr Dejmek, Ingegerd Sjöholm. Journal of Food Engineering 62 (2004) 121–129.

Google Scholar

[12] Thomas A. Eiselea, Stephen R. Drake. Journal of Food Composition and Analysis 18 (2005) 213–221.

Google Scholar

[13] E. Róth, A. Berna, K. Beullens, 2007. Postharvest Biology and Technology 45, 11-19.

Google Scholar

[14] Keenan, D.F., Valverde, J., Gormley, R., Butler, F., Brunton, N.P., LWT - Food Science and Technology (2012), doi: 10. 1016/j. lwt. 2012. 04. 005.

DOI: 10.1016/j.lwt.2012.04.005

Google Scholar

[15] Rodrigo P. Feliciano, C. Antunes, A. Ramos, 2010. Journal of Function Foods. 2, 35-45.

Google Scholar

[16] F.R. Harker, K.B. Marsh, H. Young, Postharvest Biology and Technology. 24 (2002) 241–250.

Google Scholar

[17] NP-1421: 1977. Jihong Wu, Haiyan Gao, et al, Food Chemistry 103 (2007) 88–93.

Google Scholar

[18] Souad Timoumi, Daoued Mihoubi, Fethi Zagrouba, 2007. LWT 40, 1648–1654.

Google Scholar

[19] Mohammad B. Hossain, Ankit Patras, 2011. Journal of Functional Foods 3, 179-189.

Google Scholar

[20] Ankit Patras, Nigel P. Brunton, Gerard Downey, 2011. Journal of Food Composition and Analysis 24, 250-256.

Google Scholar

[21] Pietro Rocculi, Santina Romani, Food Research International 37 (2004) 329–335.

Google Scholar

[22] Kader, A. A. Acta Horticulturae, (2000). 518, 15–16.

Google Scholar