[1]
Xiaobin Fan, Wenchao Peng, Yang Li etc. Deoxygenation of exfoliated graphite oxide under alkaline conditions : a green route to graphene preparation [J]. Adv. Mater. 2008, 20, 4490-4493.
DOI: 10.1002/adma.200801306
Google Scholar
[2]
Novoselov K S. Geim A K. Morozov S V. et al. Electric field effect in alomically thin carbon films [J]. Science, 2004, 306(5296): 183-191.
Google Scholar
[3]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146(9-10): 351-355.
DOI: 10.1016/j.ssc.2008.02.024
Google Scholar
[4]
Voller A, Feng X L, Wang X, Zhi L J, Mullen K, Koch N, Rabe J P. Electronic and structural properties of graphene-based transparent and conductive thin film electrodes. Appl. Phys. A: Mater. Sci. Process. 2009, 94: 1-4.
DOI: 10.1007/s00339-008-4931-2
Google Scholar
[5]
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388.
DOI: 10.1126/science.1157996
Google Scholar
[6]
Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Lett, 2008 , 8(3): 902-907.
DOI: 10.1021/nl0731872
Google Scholar
[7]
Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors [J]. Nano Lett, 2008, 8(10): 3498-3502.
DOI: 10.1021/nl802558y
Google Scholar
[8]
Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon, 2007, 45(7): 1558-1565.
DOI: 10.1016/j.carbon.2007.02.034
Google Scholar
[9]
Ryota Negishi, Hiroki Hirano, Yasuhide Ohno, et al. Layer-by-layer growth of graphene layers on graphene substrates by chemical vapor deposition [J]. Thin Solid Films , 2011, 519: 6447-6452.
DOI: 10.1016/j.tsf.2011.04.229
Google Scholar
[10]
Jiao L Y, Zhang L, Wang X R, et al. Narrow graphene nanoribbons from carbon nanotubes [J]. Nature, 2009, 458(7240): 877-880.
DOI: 10.1038/nature07919
Google Scholar
[11]
Cai J M, Ruffieux P, Jaafer R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons [J]. Nature, 2010, 466(7305): 470-473.
DOI: 10.1038/nature09211
Google Scholar
[12]
Hirata M, Gotou T, Horiuchi S, et al. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon, 2004, 42(14): 2929-2937.
DOI: 10.1016/s0008-6223(04)00444-0
Google Scholar
[13]
Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
DOI: 10.1021/ja01539a017
Google Scholar
[14]
Bissessur R, Scully S E. Intercalation of solid polymer electrolytes into graphite oxide [J]. Soild State Ionics, 2007, 178(11/12): 877-882.
DOI: 10.1016/j.ssi.2007.02.030
Google Scholar
[15]
Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers [J]. Phys. Rev. Lett, 2006, 97(18): 187401.
Google Scholar
[16]
Konstantin N. Kudin, Bulent Ozbas, Hannes C. Schniepp, et al. Raman spectra of graphite oxide and functionalized graphene sheets [J]. Nano letters, 2008, 8(1): 36-41.
DOI: 10.1021/nl071822y
Google Scholar
[17]
Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. Chem. Phys, 1970, 53(3): 1126-1130.
Google Scholar
[18]
Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. J Phys Rev B, 2000, 6(20): 14095-14107.
DOI: 10.1103/physrevb.61.14095
Google Scholar