Advances in Molecular Technologies and Platforms for the Diagnosis of Infectious Diseases

Article Preview

Abstract:

nfectious microbial pathogens constitute the largest cause of morbidity and mortality worldwide. Early diagnosis and rapid infection control measures can lead to improved outcomes, earlier discharges and reduced nosocomial infections. Conventional diagnostic methods for infectious diseases such as microscopy, culture, and immunological methods, in most cases, are not universally applicable, less sensitive and could take from days to months to complete depending on the pathogen. Molecular assays based on nucleic acids such as polymerase chain reaction (PCR) have improved the sensitivity, specificity and turn-around time in diagnostic microbiology laboratories. These tests are particularly important to detect very low levels of pathogens in clinical samples, and for organisms that have long half-lives or are non-culturable. However, individual molecular tests are available for only a limited number of the more common infectious agents. Moreover, infectious disease events arising from novel pathogens or genetic variants have significantly increased, recently, for which, routine diagnostic methods are not yet available. Therefore, molecular methods and technologies capable of detecting multiple pathogens in a single test have become available over the last few years. Although, these methods are based on the conventional nucleic acid amplification and hybridization chemistry, enhanced multiplexing capability has been achieved through innovations in nucleic acid labeling techniques, and post-amplification analytic methods and instrumentation. The availability of these test kits brought a new level of convenience to the physicians ordering practices, and to the laboratory personnel, as they require very little hands on time. However, these tests are yet unaffordable to many laboratories, and in many cases, the sensitivity is poor compared to that of single-target, real-time PCR assays. Looking into the future, the revolutionary, next generation sequencing (NGS) technology is now being considered as a potential method for rapid identification of hundreds of pathogens, in an unbiased manner, with a single test that could significantly benefit patients who are critically ill with undiagnosed disease.

You might also be interested in these eBooks

Info:

[1] D. A. Relman, S. Falkow, A Molecular Perspective of Microbial Pathogenicity, in: G.L. Mandell, J.E. Bennett, R. Dolin (Eds.), Principles and practice of infectious diseases, Elsevier, Philadelphia, 2010, pp.3-13.

DOI: 10.1016/b978-0-443-06839-3.00001-1

Google Scholar

[2] Information on http://www.who.int/infectious-disease-report/, Accessed June 15, 2013.

Google Scholar

[3] W. Levinson, Review of Medical Microbiology and Immunology, 12th ed., McGraw-Hill, New York 2012.

Google Scholar

[4] A. Zeimet, D.R. McBride, R. Basilan, W.E. Roland, D. McCrary, H. Koo, Infectious Diseases, in: R.E. Rakel, D.P. Rakel (Eds.), Textbook of Family Medicine, Elsevier Inc., Philadelphia, PA, 2011, pp.207-247.

DOI: 10.1016/b978-1-4377-1160-8.10016-8

Google Scholar

[5] A.C. Yu, G. Vatcher, X. Yue, Y. Dong, M.H. Li, P.H. Tam, P.Y. Tsang, A.K. Wong, M. H. Hui, B. Yang, H. Tang, and L.T. Lau, Nucleic acid-based diagnostics for infectious diseases in public health affairs, Front Med. 6 (2012) 173-186.

DOI: 10.1007/s11684-012-0195-5

Google Scholar

[6] L.S. Garcia, Clinical Microbiology Procedures Handbook, 3rd ed., ASM Press, Washington, DC 2010.

Google Scholar

[7] S.A. Bustin, Kessler, H.H., Amplification and Detection Methods, in: H.H. Kessler (Ed.), Molecular Diagnostics of Infectious Diseases, Walter de Gruyter, Berlin, DEU, 2010, pp.65-78.

DOI: 10.1515/9783110214864.53

Google Scholar

[8] J. Versalovic, K.C. Carroll, G. Funke, J.H. Jorgensen, M.L. Landry, D.W. Warnock, Manual of Clinical Microbiology, 10th ed., ASM Press, Washington, DC 2013.

DOI: 10.1128/9781555816728

Google Scholar

[9] Information on http://textbookofbacteriology.net/themicrobialworld/medical.html, Accessed June 15, 2013.

Google Scholar

[10] G.L. Mandell, J.E. Bennett, R. Dolin, Principles and Practice of Infectious Diseases, 7th ed., Elsevier, Philadelphia 2010.

DOI: 10.1086/655696

Google Scholar

[11] J.C. O'Horo, D. Thompson, N. Safdar, Is the gram stain useful in the microbiologic diagnosis of VAP? A meta-analysis, Clin. Infect. Dis. 55 (2012) 551-561.

DOI: 10.1093/cid/cis512

Google Scholar

[12] A.A. Faraj, O.D. Omonbude, P. Godwin, Gram staining in the diagnosis of acute septic arthritis, Acta Orthop. Belg. 68 (2002) 388-391.

Google Scholar

[13] R.C. Reyes, L. Stoakes, S. Milburn, G. Lennox, J. Daniel, S. N. Silver, E. Wijnker, M.A. John, Z. Hussain, Evaluation of a new chromogenic medium for the detection of methicillin-resistant Staphylococcus aureus carriage on nasal and perianal specimens, Diagn. Microbiol. Infect. Dis. 60 (2008) 225-227.

DOI: 10.1016/j.diagmicrobio.2007.09.011

Google Scholar

[14] M.R. Hasan, J.D. Brunstein, G. Al-Rawahi, R. Tan, E. Thomas, P. Tilley, Optimal use of MRSASelect and PCR to maximize sensitivity and specificity of MRSA detection, Curr Microbiol. 66 (2012) 61-63.

DOI: 10.1007/s00284-012-0241-1

Google Scholar

[15] C.H. Cho, B. Chulten, C.K. Lee, M.H. Nam, S.Y. Yoon, C.S. Lim, Y. Cho, Y.K. Kim, Evaluation of a novel real-time RT-PCR using TOCE technology compared with culture and Seeplex RV15 for simultaneous detection of respiratory viruses, J. Clin. Virol. 57 (2013) 338-342.

DOI: 10.1016/j.jcv.2013.04.014

Google Scholar

[16] J. Heritage, N. Ransome, P.A. Chambers, M. H. Wilcox, A comparison of culture and PCR to determine the prevalence of ampicillin-resistant bacteria in the faecal flora of general practice patients, J. Antimicrob. Chemother 48 (2001) 287-289.

DOI: 10.1093/jac/48.2.287

Google Scholar

[17] H. Frickmann, D. Dekker, K. Boahen, S. Acquah, N. Sarpong, Y. Adu-Sarkodie, N.G. Schwarz, J. May, F. Marks, S. Poppert, D.F. Wiemer, R.M. Hagen, Increased detection of invasive enteropathogenic bacteria in pre-incubated blood culture materials by real-time PCR in comparison with automated incubation in Sub-Saharan Africa, Scand. J. Infect. Dis. (2013).

DOI: 10.3109/00365548.2013.777777

Google Scholar

[18] R.C. Tilton, Immunologic Methods for Detection of Microbial Antigens, in: W.J.H.J.A. Balows, M. Ohashi, A. Turano, E. H. Lennete (Eds.), Laboratory Diagnosis of Infectious Diseases, Springer, New York, 1988, pp.14-21.

DOI: 10.1007/978-1-4612-3898-0_3

Google Scholar

[19] A.M. Schotthoefer, J.K. Meece, L.C. Ivacic, P.D. Bertz, K. Zhang, T. Weiler, T.S. Uphoff, T. R. Fritsche, Comparison of a Real-time PCR Method with Serology and Blood Smear Analysis for Diagnosis of Human Anaplasmosis: Importance of Infection Time Course for Optimal Test Utilization, J. Clin. Microbiol. 51 (2013) 2147-2153.

DOI: 10.1128/jcm.00347-13

Google Scholar

[20] K. E. Templeton, S.A. Scheltinga, A.W. Graffelman, J.M. Van Schie, J.W. Crielaard, P. Sillekens, P.J. Van Den Broek, H. Goossens, M.F. Beersma, E. C. Claas, Comparison and evaluation of real-time PCR, real-time nucleic acid sequence-based amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae, J. Clin. Microbiol. 41 (2003) 4366-4371.

DOI: 10.1128/jcm.41.9.4366-4371.2003

Google Scholar

[21] F. Gharabaghi, R. Tellier, R. Cheung, C. Collins, G. Broukhanski, S.J. Drews, S.E. Richardson, Comparison of a commercial qualitative real-time RT-PCR kit with direct immunofluorescence assay (DFA) and cell culture for detection of influenza A and B in children, J. Clin. Virol. 42 (2008) 190-193.

DOI: 10.1016/j.jcv.2008.01.013

Google Scholar

[22] K.A. Enan, H. Rennert, A.M. El-Eragi, A.R. El Hussein, I. M. Elkhidir, Comparison of Real-time PCR to ELISA for the detection of human cytomegalovirus infection in renal transplant patients in the Sudan, Virol. J. 8 (2011) 1-4.

DOI: 10.1186/1743-422x-8-222

Google Scholar

[23] M.R. Hasan, R. Tan, G.N. Al-Rawahi, E. Thomas, P. Tilley, Short-term stability of pathogen-specific nucleic acid targets in clinical samples, J. Clin. Microbiol. 50 (2012) 4147-4150.

DOI: 10.1128/jcm.02659-12

Google Scholar

[24] S. Mattoo, J.D. Cherry, Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies, Clin. Microbiol. Rev. 18 (2005) 326-382.

DOI: 10.1128/cmr.18.2.326-382.2005

Google Scholar

[25] D. Raoult, P.E. Fournier, M. Drancourt, What does the future hold for clinical microbiology?, Nat. Rev. Microbiol. 2 (2004) 151-159.

DOI: 10.1038/nrmicro820

Google Scholar

[26] CLSI, Molecular Diagnostic Methods for Infectious Diseases; Approved Guideline-Second Edition. MM3-A2., ed., Clinical and Laboratory Standards Institute, Wayne, PA 2006.

Google Scholar

[27] S.P. Naber, Molecular pathology--diagnosis of infectious disease, N Engl J Med 331 (1994) 1212-1215.

DOI: 10.1056/nejm199411033311808

Google Scholar

[28] K.L. Muldrew, Molecular diagnostics of infectious diseases, Curr. Opin. Pediatr. 21 (2009) 102-111.

Google Scholar

[29] K.B. Mullis, The unusual origin of the polymerase chain reaction, Sci. Am. 262 (1990) 56-65.

DOI: 10.1038/scientificamerican0490-56

Google Scholar

[30] R.P. Viscidi, R.G. Yolken, Molecular diagnosis of infectious diseases by nucleic acid hybridization, Mol. Cell Probes. 1 (1987) 3-14.

DOI: 10.1016/0890-8508(87)90003-x

Google Scholar

[31] R.P. Peters, P.H. Savelkoul, A.M. Simoons-Smit, S.A. Danner, C.M. Vandenbroucke-Grauls, M.A. van Agtmael, Faster identification of pathogens in positive blood cultures by fluorescence in situ hybridization in routine practice, J. Clin. Microbiol. 44 (2006) 119-123.

DOI: 10.1128/jcm.44.1.119-123.2006

Google Scholar

[32] J.J. Carrino, H.H. Lee, Nucleic acid amplification methods, J. Microbiol. Methods 23 (1995) 3-20.

Google Scholar

[33] L. Garibyan, N. Avashia, Polymerase chain reaction, J. Invest. Dermatol. 133 (2013) e6.

Google Scholar

[34] S. Wilhelm, U. Truyen, Real-time reverse transcription polymerase chain reaction assay to detect a broad range of feline calicivirus isolates, J. Virol. Methods 133 (2006) 105-108.

DOI: 10.1016/j.jviromet.2005.10.011

Google Scholar

[35] H.M. Welch, The polymerase chain reaction, Methods Mol. Biol. 878 (2012) 71-88.

Google Scholar

[36] K.M. Ririe, R.P. Rasmussen, C.T. Wittwer, Product differentiation by analysis of DNA melting curves during the polymerase chain reaction, Anal. Biochem. 245 (1997) 154-160.

DOI: 10.1006/abio.1996.9916

Google Scholar

[37] J. Wilhelm, A. Pingoud, Real-time polymerase chain reaction, Chembiochem 4 (2003) 1120-1128.

DOI: 10.1002/cbic.200300662

Google Scholar

[38] S.A. Marras, S. Tyagi, F.R. Kramer, Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes, Clin. Chim. Acta 363 (2006) 48-60.

DOI: 10.1016/j.cccn.2005.04.037

Google Scholar

[39] P. Craw, W. Balachandran, Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review, Lab Chip 12 (2012) 2469-2486.

DOI: 10.1039/c2lc40100b

Google Scholar

[40] P. Gill, A. Ghaemi, Nucleic acid isothermal amplification technologies: a review, Nucleosides Nucleotides Nucleic Acids 27 (2008) 224-243.

DOI: 10.1080/15257770701845204

Google Scholar

[41] A.E. Men, P. Wilson, K. Siemering, S. Forrest, Sanger DNA Sequencing, in: M. Janitz (Ed.), Next-Generation Genome Sequencing: Towards Personalized Medicine., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.

DOI: 10.1002/9783527625130.ch1

Google Scholar

[42] J.M. Janda, S.L. Abbott, 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls, J. Clin. Microbiol. 45 (2007) 2761-2764.

DOI: 10.1128/jcm.01228-07

Google Scholar

[43] S. Mignard, J.P. Flandrois, 16S rRNA sequencing in routine bacterial identification: a 30-month experiment, J. Microbiol. Methods 67 (2006) 574-581.

DOI: 10.1016/j.mimet.2006.05.009

Google Scholar

[44] S. Persson, J.N. Jensen, K.E. Olsen, Multiplex PCR method for detection of Clostridium difficile tcdA, tcdB, cdtA, and cdtB and internal in-frame deletion of tcdC, J. Clin. Microbiol. 49 (2011) 4299-4300.

DOI: 10.1128/jcm.05161-11

Google Scholar

[45] C.G. Fedele, M. Ciardi, S. Delia, J.M. Echevarria, A. Tenorio, Multiplex polymerase chain reaction for the simultaneous detection and typing of polyomavirus JC, BK and SV40 DNA in clinical samples, J. Virol. Methods 82 (1999) 137-144.

DOI: 10.1016/s0166-0934(99)00095-6

Google Scholar

[46] J.E. Echevarria, D.D. Erdman, E.M. Swierkosz, B.P. Holloway, L.J. Anderson, Simultaneous detection and identification of human parainfluenza viruses 1, 2, and 3 from clinical samples by multiplex PCR, J. Clin. Microbiol. 36 (1998) 1388-1391.

DOI: 10.1128/jcm.36.5.1388-1391.1998

Google Scholar

[47] S.A. Marras, Selection of fluorophore and quencher pairs for fluorescent nucleic acid hybridization probes, Methods Mol. Biol. 335 (2006) 3-16.

DOI: 10.1385/1-59745-069-3:3

Google Scholar

[48] Information on http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/PCR/real-time-pcr/real-time-pcr-instruments.html, Accessed June 15, 2013.

Google Scholar

[49] Information on http://www.roche-applied-science.com/webapp/wcs/stores/servlet/CategoryDisplay?catalogId=10001&tab=&identifier=Real-Time+PCR+Overview&langId=-1&storeId=15016., Accessed June 15, 2013.

Google Scholar

[50] Information on http://www.qiagen.com/Products/Catalog/Automated-Solutions/Detection-and-Analysis/Rotor-Gene-Q#orderinginformation, Accessed June 15, 2013.

Google Scholar

[51] Information on http://www.bio-rad.com/evportal/en/CA/LSR/Category/059db09c-88a4-44ad-99f8-78635d8d54db/Real-Time-PCR-Detection-Systems, Accessed June 15, 2013.

Google Scholar

[52] J.L. Silva, G.G. Leite, G.M. Bastos, B.C. Lucas, D.K. Shinohara, J.S. Takinami, M. Miyata, C.M. Fajardo, A.D. Luchessi, C.Q. Leite, R.F. Cardoso, R.D. Hirata, M.H. Hirata, Plasmid-based controls to detect rpoB mutations in Mycobacterium tuberculosis by quantitative polymerase chain reaction-high-resolution melting, Mem. Inst. Oswaldo Cruz. 108 (2013) 106-109.

DOI: 10.1590/s0074-02762013000100017

Google Scholar

[53] Information on http://find.lifetechnologies.com/Global/FileLib/qPCR/RealTimePCR_Handbook_Update_FLR.pdf, Accessed June 15, 2013.

Google Scholar

[54] I.M. Mackay, Real-time PCR in the microbiology laboratory, Clin Microbiol Infect 10 (2004) 190-212.

Google Scholar

[55] M.L. Choudhary, S.P. Anand, M. Heydari, G. Rane, V.A. Potdar, M.S. Chadha, A.C. Mishra, Development of a multiplex one step RT-PCR that detects eighteen respiratory viruses in clinical specimens and comparison with real time RT-PCR, J Virol Methods 189 (2013) 15-19.

DOI: 10.1016/j.jviromet.2012.12.017

Google Scholar

[56] M.J. Loeffelholz, D.L. Pong, R.B. Pyles, Y. Xiong, A.L. Miller, K.K. Bufton, T. Chonmaitree, Comparison of the FilmArray Respiratory Panel and Prodesse real-time PCR assays for detection of respiratory pathogens, J. Clin. Microbiol. 49 (2011) 4083-4088.

DOI: 10.1128/jcm.05010-11

Google Scholar

[57] K.A. Thurman, A.K. Warner, K.C. Cowart, A.J. Benitez, J.M. Winchell, Detection of Mycoplasma pneumoniae, Chlamydia pneumoniae, and Legionella spp. in clinical specimens using a single-tube multiplex real-time PCR assay, Diagn. Microbiol. Infect. Dis. 70 (2011) 1-9.

DOI: 10.1016/j.diagmicrobio.2010.11.014

Google Scholar

[58] M. Hindiyeh, D.R. Hillyard, K.C. Carroll, Evaluation of the Prodesse Hexaplex multiplex PCR assay for direct detection of seven respiratory viruses in clinical specimens, Am. J. Clin. Pathol. 116 (2001) 218-224.

DOI: 10.1309/f1r7-xd6t-rn09-1u6l

Google Scholar

[59] F. Barletta, E.H. Mercado, A. Lluque, J. Ruiz, T.G. Cleary, T.J. Ochoa, Multiplex real-time polymerase chain reaction for the diagnosis of Campylobacter, Salmonella, and Shigella, J. Clin. Microbiol. (2011) Published ahead of print.

DOI: 10.1128/JCM.01397-13

Google Scholar

[60] R.R. Higgins, M. Beniprashad, M. Cardona, S. Masney, D.E. Low, J.B. Gubbay, Evaluation and verification of the Seeplex Diarrhea-V ACE assay for simultaneous detection of adenovirus, rotavirus, and norovirus genogroups I and II in clinical stool specimens, J. Clin. Microbiol. 49 (2011) 3154-3162.

DOI: 10.1128/jcm.00599-11

Google Scholar

[61] M. Pavlovic, I. Huber, H. Skala, R. Konrad, H. Schmidt, A. Sing, U. Busch, Development of a multiplex real-time polymerase chain reaction for simultaneous detection of enterohemorrhagic Escherichia coli and enteropathogenic Escherichia coli strains, Foodborne Pathog. Dis. 7 (2010) 801-808.

DOI: 10.1089/fpd.2009.0457

Google Scholar

[62] Introduction to Flow Cytometry: A Learning Guide, ed., Becton, Dickinson and Company, San Jose, CA 2000.

Google Scholar

[63] A.M. Caliendo, Multiplex PCR and emerging technologies for the detection of respiratory pathogens, Clin. Infect. Dis. 52(4) (2011) S326-330.

DOI: 10.1093/cid/cir047

Google Scholar

[64] Information on http://www.luminexcorp.com/TechnologiesScience/xMAPTechnology/, Accessed June 15, 2013.

Google Scholar

[65] Information on http://www.luminexcorp.com/TechnologiesScience/xTAGTechnology/, Accessed June 15, 2013.

Google Scholar

[66] K. Loens, A.M. van Loon, F. Coenjaerts, Y. van Aarle, H. Goossens, P. Wallace, E.J. Claas, M. Ieven, Performance of different mono- and multiplex nucleic acid amplification tests on a multipathogen external quality assessment panel, J. Clin. Microbiol. 50 (2012) 977-987.

DOI: 10.1128/jcm.00200-11

Google Scholar

[67] K. Pabbaraju, K.L. Tokaryk, S. Wong, J.D. Fox, Comparison of the Luminex xTAG respiratory viral panel with in-house nucleic acid amplification tests for diagnosis of respiratory virus infections, J. Clin. Microbiol. 46 (2008) 3056-3062.

DOI: 10.1128/jcm.00878-08

Google Scholar

[68] J.M. Balada-Llasat, H. LaRue, C. Kelly, L. Rigali, P. Pancholi, Evaluation of commercial ResPlex II v2.0, MultiCode-PLx, and xTAG respiratory viral panels for the diagnosis of respiratory viral infections in adults, J. Clin. Virol. 50 (2011) 42-45.

DOI: 10.1016/j.jcv.2010.09.022

Google Scholar

[69] K. Pabbaraju, S. Wong, K.L. Tokaryk, K. Fonseca, and S.J. Drews, Comparison of the Luminex xTAG respiratory viral panel with xTAG respiratory viral panel fast for diagnosis of respiratory virus infections, J. Clin. Microbiol. 49 (2011) 1738-1744.

DOI: 10.1128/jcm.02090-10

Google Scholar

[70] E. Claas, C.A. Burnham, T. Mazulli, K. Templeton, and F. Topin, Performance of the xTAG(R) Gastrointestinal Pathogen Panel (GPP), a multiplex molecular assay for simultaneous detection of bacterial, viral and parasitic causes of infectious gastroenteritis, J. Microbiol. Biotechnol. (2013).

DOI: 10.4014/jmb.1212.12042

Google Scholar

[71] M. Raymaekers, B. de Rijke, I. Pauli, A.M. Van den Abeele, R. Cartuyvels, Timely diagnosis of respiratory tract infections: evaluation of the performance of the Respifinder assay compared to the xTAG respiratory viral panel assay, J. Clin. Virol. 52 (2011) 314-316.

DOI: 10.1016/j.jcv.2011.08.017

Google Scholar

[72] P.F. Wolffs, C. Vink, J. Keijdener, B. Habek, M. Reijans, G. Simons, C.A. Bruggeman, A. J. van den Brule, Evaluation of MeningoFinder, a novel multiplex ligation-dependent probe amplification assay for simultaneous detection of six virus species causing central nervous system infections, J. Clin. Microbiol. 47 (2009) 2620-2622.

DOI: 10.1128/jcm.02436-08

Google Scholar

[73] L. Hlousek, S. Voronov, V. Diankov, A.B. Leblang, P.J. Wells, D.M. Ford, J. Nolling, K.W. Hart, P.A. Espinoza, M.R. Bristol, G.J. Tsongalis, B. Yen-Lieberman, V.I. Slepnev, L.I. Kong, M.C. Lee, Automated high multiplex qPCR platform for simultaneous detection and quantification of multiple nucleic acid targets, Biotechniques 52 (2012) 316-324.

DOI: 10.2144/0000113852

Google Scholar

[74] Information on http://www.primeradx.com/technology.php, Accessed June 15, 2013.

Google Scholar

[75] E.B. Popowitch, S.S. O'Neill, M.B. Miller, Comparison of the Biofire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP fast multiplex assays for detection of respiratory viruses, J. Clin. Microbiol. 51 (2013) 1528-1533.

DOI: 10.1128/jcm.03368-12

Google Scholar

[76] V.M. Pierce, M. Elkan, M. Leet, K.L. McGowan, R.L. Hodinka, Comparison of the Idaho Technology FilmArray system to real-time PCR for detection of respiratory pathogens in children, J. Clin. Microbiol. 50 (2012) 364-371.

DOI: 10.1128/jcm.05996-11

Google Scholar

[77] M. Wilm, Principles of electrospray ionization, Mol Cell Proteomics 10 M111 009407.

Google Scholar

[78] S. Sauer, Typing of single nucleotide polymorphisms by MALDI mass spectrometry: principles and diagnostic applications, Clin. Chim. Acta 363 (2006) 95-105.

DOI: 10.1016/j.cccn.2005.05.040

Google Scholar

[79] H. Oberacher, On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA, Anal. Bioanal. Chem. 391 (2008) 135-149.

DOI: 10.1007/s00216-008-1929-8

Google Scholar

[80] D.M. Wolk, E.J. Kaleta, V.H. Wysocki, PCR-electrospray ionization mass spectrometry: the potential to change infectious disease diagnostics in clinical and public health laboratories, J. Mol. Diagn. 14 (2012) 295-304.

DOI: 10.1016/j.jmoldx.2012.02.005

Google Scholar

[81] L. Murillo, J. Hardick, K. Jeng, C.A. Gaydos, Evaluation of the Pan Influenza detection kit utilizing the PLEX-ID and influenza samples from the 2011 respiratory season, J. Virol. Methods (2013).

DOI: 10.1016/j.jviromet.2013.06.006

Google Scholar

[82] Y.W. Tang, K.S. Lowery, A. Valsamakis, V.C. Schaefer, J.D. Chappell, J. White-Abell, C.D. Quinn, H. Li, C.A. Washington, J. Cromwell, C.M. Giamanco, M. Forman, J. Holden, R.E. Rothman, M.L. Parker, E.V. Ortenberg, L. Zhang, Y.L. Lin, C.A. Gaydos, Clinical accuracy of a PLEX-ID flu device for simultaneous detection and identification of influenza viruses A and B, J. Clin. Microbiol. 51 (2012) 40-45.

DOI: 10.1128/jcm.01978-12

Google Scholar

[83] S. Cordey, Y. Thomas, P. Suter, L. Kaiser, Pilot Evaluation of RT-PCR/Electrospray Ionization Mass Spectrometry (PLEX-ID/Flu assay) on Influenza-Positive Specimens, Open Virol J 6 (2012) 64-67.

DOI: 10.2174/1874357901206010064

Google Scholar

[84] D. Jacob, U. Sauer, R. Housley, C. Washington, K. Sannes-Lowery, D.J. Ecker, R. Sampath, R. Grunow, Rapid and high-throughput detection of highly pathogenic bacteria by Ibis PLEX-ID technology, PLoS One 7 (2012) e39928.

DOI: 10.1371/journal.pone.0039928

Google Scholar

[85] P.J. Simner, J.R. Uhl, L. Hall, M.M. Weber, R.C. Walchak, S. Buckwalter, N.L. Wengenack, Broad-Range Direct Detection and Identification of Fungi by Use of the PLEX-ID PCR-Electrospray Ionization Mass Spectrometry (ESI-MS) System, J. Clin. Microbiol. 51 (2013) 1699-1706.

DOI: 10.1128/jcm.03282-12

Google Scholar

[86] S.M. Yoo, J.H. Choi, S.Y. Lee, and N.C. Yoo, Applications of DNA microarray in disease diagnostics, J. Microbiol. Biotechnol. 19 (2009) 635-646.

Google Scholar

[87] M.B. Miller, Y.W. Tang, Basic concepts of microarrays and potential applications in clinical microbiology, Clin. Microbiol. Rev. 22 (2009) 611-633.

DOI: 10.1128/cmr.00019-09

Google Scholar

[88] M.L. Metzker, Sequencing technologies - the next generation, Nat. Rev. Genet. 11 (2010) 31-46.

Google Scholar

[89] L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, M. Law, Comparison of next-generation sequencing systems, J. Biomed. Biotechnol. 2012 (2012).

DOI: 10.1155/2012/251364

Google Scholar

[90] T. Tucker, M. Marra, J.M. Friedman, Massively parallel sequencing: the next big thing in genetic medicine, Am. J. Hum. Genet. 85 (2009) 142-154.

DOI: 10.1016/j.ajhg.2009.06.022

Google Scholar

[91] J. Shendure, E. Lieberman Aiden, The expanding scope of DNA sequencing, Nat. Biotechnol. 30 (2012) 1084-1094.

DOI: 10.1038/nbt.2421

Google Scholar

[92] J. Shendure, H. Ji, Next-generation DNA sequencing, Nat Biotechnol 26 (2008) 1135-1145.

DOI: 10.1038/nbt1486

Google Scholar

[93] P. Tang, C. Chiu, Metagenomics for the discovery of novel human viruses, Future Microbiol 5 177-189.

Google Scholar

[94] D. Bogaert, B. Keijser, S. Huse, J. Rossen, R. Veenhoven, E. van Gils, J. Bruin, R. Montijn, M. Bonten, E. Sanders, Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis, PLoS One 6 (2011) e17035.

DOI: 10.1371/journal.pone.0017035

Google Scholar

[95] L. Barzon, E. Lavezzo, V. Militello, S. Toppo, G. Palu, Applications of next-generation sequencing technologies to diagnostic virology, Int. J. Mol. Sci. 12 (2011) 7861-7884.

DOI: 10.3390/ijms12117861

Google Scholar

[96] J. Yang, F. Yang, L. Ren, Z. Xiong, Z. Wu, J. Dong, L. Sun, T. Zhang, Y. Hu, J. Du, J. Wang, Q. Jin, Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach, J. Clin. Microbiol. 49 (2011) 3463-3469.

DOI: 10.1128/jcm.00273-11

Google Scholar

[97] S. Nakamura, C.S. Yang, N. Sakon, M. Ueda, T. Tougan, A. Yamashita, N. Goto, K. Takahashi, T. Yasunaga, K. Ikuta, T. Mizutani, Y. Okamoto, M. Tagami, R. Morita, N. Maeda, J. Kawai, Y. Hayashizaki, Y. Nagai, T. Horii, T. Iida, T. Nakaya, Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach, PLoS One 4 (2009) e4219.

DOI: 10.1371/journal.pone.0004219

Google Scholar

[98] J.G. Caporaso, C.L. Lauber, W.A. Walters, D. Berg-Lyons, C.A. Lozupone, P.J. Turnbaugh, N. Fierer, R. Knight, Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, Proc. Natl. Acad. Sci. USA, 108 (2010) 4516-4522.

DOI: 10.1073/pnas.1000080107

Google Scholar

[99] S.J. Salipante, D.J. Sengupta, C. Rosenthal, G. Costa, J. Spangler, E.H. Sims, M.A. Jacobs, S.I. Miller, D.R. Hoogestraat, B.T. Cookson, C. McCoy, F.A. Matsen, J. Shendure, C.C. Lee, T.T. Harkins, N.G. Hoffman, Rapid 16S rRNA Next-Generation Sequencing of Polymicrobial Clinical Samples for Diagnosis of Complex Bacterial Infections, PLoS One 8 (2013) e65226.

DOI: 10.1371/journal.pone.0065226

Google Scholar

[100] S.D. Boyd, Diagnostic applications of high-throughput DNA sequencing, Annu. Rev. Pathol. 8 (2012) 381-410.

Google Scholar

[101] E.M. Burd, Validation of laboratory-developed molecular assays for infectious diseases, Clin. Microbiol. Rev. 23 (2010) 550-576.

DOI: 10.1128/cmr.00074-09

Google Scholar