Advanced Materials Research
Vols. 816-817
Vols. 816-817
Advanced Materials Research
Vol. 815
Vol. 815
Advanced Materials Research
Vol. 814
Vol. 814
Advanced Materials Research
Vol. 813
Vol. 813
Advanced Materials Research
Vol. 812
Vol. 812
Advanced Materials Research
Vol. 811
Vol. 811
Advanced Materials Research
Vol. 810
Vol. 810
Advanced Materials Research
Vols. 807-809
Vols. 807-809
Advanced Materials Research
Vols. 805-806
Vols. 805-806
Advanced Materials Research
Vol. 804
Vol. 804
Advanced Materials Research
Vol. 803
Vol. 803
Advanced Materials Research
Vol. 802
Vol. 802
Advanced Materials Research
Vol. 801
Vol. 801
Advanced Materials Research Vol. 810
Paper Title Page
Abstract: The design of new technologies for treatment of human disorders is a complex and difficult task. The aim of this article is to explore state of art discussion of various techniques and materials involve in cell encapsulations. Encapsulation of cells within semi-permeable polymer shells or beads is a potentially powerful tool, and has long been explored as a promising approach for the treatment of several human diseases such as lysosomal storage disease (LSD), neurological disorders, Parkinsons disease, dwarfism, hemophilia, cancer and diabetes using immune-isolation gene therapy.
1
Abstract: Chimeric proteins have been used for years for various purposes ranging from biomaterials to candidate drug molecules, and from bench to bulk. Regenerative medicine needs various kinds of proteins for providing essential factors for maintaining starting cells, like induced pluripotent stem cells (iPSC), and renewal, proliferation, targeted differentiation of these cells, and as extracellular matrix for the experimental cells. However, there are several challenges associated with making functional chimeric proteins for effective application as biomaterial in this field. Fc-chimeric protein technology could be an effective solution to overcome many of them. These tailored proteins are recently becoming superior choice of biomaterials in stem cell technology and regenerative medicine due to their specific advantageous biophysical and biochemical properties over other chimeric forms of same proteins. Recent advances in recombinant protein-related science and technology also expedited the popularity of this kind of engineered protein. Over the last decade our lab has been pioneering this field, and we and others have been successfully applied Fc-chimeric proteins to overcome many critical issues in stem cell technologies targeting regenerative medicine and tissue engineering. Fc-chimeric protein-based biomaterials, specifically, E-cad-Fc have been preferentially applied for coating of cell culture plates for establishing xenogeneic-agent free monolayer stem cell culture and their maintenance, enhanced directed differentiation of stem cells to specific lineages, and non-enzymatic on-site one-step purification of target cells. Here the technology, recent discoveries, and future direction related with the E-cad-Fc-chimeric protein in connection with regenerative medicine are described.
41
Abstract: nfectious microbial pathogens constitute the largest cause of morbidity and mortality worldwide. Early diagnosis and rapid infection control measures can lead to improved outcomes, earlier discharges and reduced nosocomial infections. Conventional diagnostic methods for infectious diseases such as microscopy, culture, and immunological methods, in most cases, are not universally applicable, less sensitive and could take from days to months to complete depending on the pathogen. Molecular assays based on nucleic acids such as polymerase chain reaction (PCR) have improved the sensitivity, specificity and turn-around time in diagnostic microbiology laboratories. These tests are particularly important to detect very low levels of pathogens in clinical samples, and for organisms that have long half-lives or are non-culturable. However, individual molecular tests are available for only a limited number of the more common infectious agents. Moreover, infectious disease events arising from novel pathogens or genetic variants have significantly increased, recently, for which, routine diagnostic methods are not yet available. Therefore, molecular methods and technologies capable of detecting multiple pathogens in a single test have become available over the last few years. Although, these methods are based on the conventional nucleic acid amplification and hybridization chemistry, enhanced multiplexing capability has been achieved through innovations in nucleic acid labeling techniques, and post-amplification analytic methods and instrumentation. The availability of these test kits brought a new level of convenience to the physicians ordering practices, and to the laboratory personnel, as they require very little hands on time. However, these tests are yet unaffordable to many laboratories, and in many cases, the sensitivity is poor compared to that of single-target, real-time PCR assays. Looking into the future, the revolutionary, next generation sequencing (NGS) technology is now being considered as a potential method for rapid identification of hundreds of pathogens, in an unbiased manner, with a single test that could significantly benefit patients who are critically ill with undiagnosed disease.
77
Abstract: Fermentation, a process traditionally known for the anaerobic conversion of sugar to carbon dioxide and alcohol by yeast, now refers to an industrial process of manufacturing a wide variety of metabolites and biomaterials by using microorganisms or mammalian cells in a controlled culture environment. Fermentation can be performed in batch mode, continuous mode or in a combinatory, fed-batch mode, depending on the product of interest. Fermentation technology has long been known for the production of various medically important products such as antibiotics, solvents such as ethanol, intermediary compounds such as citric acid, probiotics such as yoghurt etc. New generation fermentation products include anti-viral drugs, therapeutic recombinant proteins and DNA, and monoclonal antibodies. Apart from the drugs, fermentation is also used for the commercial production of materials required for the development of diagnostic kits, drug delivery vehicles and medical devices. Fermentation technology remains at the heart of rapidly growing biopharmaceutical industry today, which is expected to expand even more in the days ahead, in parallel with the progress in novel, targeted drug discovery.
127
Abstract: Gliclazide is a second generation sulfonylurea, which is used as antidiabetics drug. It is orally administrated and used for the treatment of non-insulin-dependent diabetes mellitus (NIDDM) and has duration of action of 12 h or more. Beside its hypoglycaemic effects, gliclazide was reported to have many other important effects, such as: suppression of platelet functions, antithrombotic actions, decreased the production of tumour necrosis factor (TNF) α by endothelial cells and other effects. The unique activities of gliclazide has open a new avenue for the drug development research. This work is aimed to provide comprehensive information about gliclazide and its current research activities.
159
Abstract: Electrically conducting polymers (ECPs) are finding applications in various fields of science owing to their fascinating characteristic properties such as binding molecules, tuning their properties, direct communication to produce a range of analytical signals and new analytical applications. Polyaniline (PANI) is one such ECP that has been extensively used and investigated over the last decade for direct electron transfer leading towards fabrication of mediator-less biosensors. In this review article, significant attention has been paid to the various polymerization techniques of polyaniline as a transducer material, and their use in enzymes/biomolecules immobilization methods to study their bio-catalytic properties as a biosensor for potential biomedical applications.
173
Showing 1 to 7 of 7 Paper Titles