Ultrasonic Characterization of Co-Additives Effects on Elastic Moduli and Acoustic Properties of Li1-xCoxFe2O4

Article Preview

Abstract:

Acoustic microscopes can be used to measure Rayleigh and longitudinal wave velocities in a specimen at microscopic resolution. These velocities are deduced from the analysis of the so-called acoustic signatures or V(z) curves. Such curves are obtained by recording the output signal, V, as the specimen is defocused along the z axis of the lens. In this context, we investigate Co-Additives effects on reflectance functions, R(θ) and acoustic signatures. The elastic properties of Lithium cobalt mixed ferrites of different compositions from the experimentally and simulation observed that the values of longitudinal wave velocities vary from 5072 m/s to 6833 m/s whereas transverse velocities from 3084 m/s to 4105 m/s. The variation of the elastic moduli with composition was interpreted in terms of the binding forces between the atoms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Ravinder, K. Vijaya Kumar, B.S. Boyanov, Acoust. Lett. 21, 1997, PP. 30.

Google Scholar

[2] J.L. Dormann, D. Fiorani, Magnetic Properties of the Particles, 1992, North Holland, Amsterdam.

Google Scholar

[3] S.E. Shirsath, B.G. Toksha, K.M. Jadhav, Mater. Chem. Phys. 117, 2009, p.163.

Google Scholar

[4] Y.C. Venudhar, K.S. Mohan, Materials Letters 55, 2002, p.196–199.

Google Scholar

[5] E. Schreiber, H.G.K. Sundar, K.J. Rao, J. Chem. Soc., Faraday Trans. 180 , 1984 , p.3491.

Google Scholar

[6] Al-Suraihy I, Doghmane A and Hadjoub Z" Damage and Fracture Mechanics", edited by Boukharouba et. al. 2009, p.415 (Springer science).

DOI: 10.1007/978-90-481-2669-9_44

Google Scholar

[7] Briggs A 1992 Acoustic Microscopy (Oxford: Clarendon Press).

Google Scholar

[8] A. Doghmane, I. Al-Suraihy, I. Hadjoub, and Z. Hadjoub, Materials Science and Engineering 28, 2012, 012037.

DOI: 10.1088/1757-899x/28/1/012037

Google Scholar

[9] Y.C. Venudhar, K.S. Mohan, Materials Letters 55, 2001, p.135–139.

Google Scholar

[10] Quate et al., 1979; Quate, (1985).

Google Scholar

[11] A. Atalar, Penetration depth of the scanning acoustic microscope, IEEE Trans Sonics Ultrason SU-32(2): 1985, p.164–167R.

DOI: 10.1109/t-su.1985.31583

Google Scholar

[12] H. L. Bertoni () Rayleigh waves in scanning acoustic microscopy,. In: Rayleigh-Wave Theory and Application, Vol. 2, New York: Springer-Verlag; London: The Royal Institution, 1985, p.274–290S.

DOI: 10.1007/978-3-642-82621-4_19

Google Scholar

[13] C. F. Quate,., A. Atalar, & Wickramasinghe, H. K. I979 Proc. Inst. elect. Electron. Engrs 67, pp.1092-1114.

Google Scholar

[14] J. Kushibiki, A. Ohkubo, & N. Chubachi, Electron. Lett. 17, 1981. pp.534-536.

Google Scholar

[15] M. G. Somekh, , H. L. Bertoni, G. A. D. Briggs, & N.J. Burton Proc. R. Soc. Lonid. A, I985, p.401, 29-51.

Google Scholar

[16] M. G. Somekh,., G. A. D. Briggs, & C. Ilett, Phil. Mag. 49, I984, pp.179-204.

Google Scholar