High Pressure Properties of Superconducting Material Palladium

Article Preview

Abstract:

The electronic and the superconducting properties of Pd were studied in the framework of density functional perturbation theory. We explored the superconducting transition temperature for bulk Pd and predicted possible superconductivity at ambient and high pressures. It is found that of Pd is 0.0356 K at ambient pressure and it decreases with pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-331

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Favier, E. C. Walter, Z. M. P., T. Benter, and R. M. Penner, Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays, Science 293, 2227 (2001).

DOI: 10.1126/science.1063189

Google Scholar

[2] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Ballistic carbon nanotube field-effect transistors, Nature 424, 654 (2003).

DOI: 10.1038/nature01797

Google Scholar

[3] D. A. Stewart, Ab-initio investigation of phonon dispersion and anomalies in palladium. New J. Phys. 10, 043025 (2008).

DOI: 10.1088/1367-2630/10/4/043025

Google Scholar

[4] J. M. Walsh, M. H. Rice, R. G. Mcqueen, and F. L. Yarger, Shock-Wave Compressions of Twenty-Seven Metals. Phys. Rev. 108, 196 (1957).

DOI: 10.1103/physrev.108.196

Google Scholar

[5] H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0. 06 to 1 Mbar, J. Appl. Phys. 49, 3276 (1978).

DOI: 10.1063/1.325277

Google Scholar

[6] Y. Fei, J. Li, K. Hirose, W. Minarik, J. V. Orman, C. Sanloup, W. V. Westrenen, T. Komabayashi, and K. Funakoshi, A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements, Phys. Earth Planet. Int. 143, 515 (2004).

DOI: 10.1016/j.pepi.2003.09.018

Google Scholar

[7] A. Chijioke, W. J. Nellis, and I. F. Silvera, High-pressure equations of state of Al, Cu, Ta, and W, J. Appl. Phys. 98, 073526 (2005).

DOI: 10.1063/1.2071449

Google Scholar

[8] B. Stritzker, Superconductivity in Irradiated Palladium, Phys. Rev. Lett. 42, 1769 (1979).

DOI: 10.1103/physrevlett.42.1769

Google Scholar

[9] R. Konig, A. Schindler, and T. Herrmannsdorfer, Superconductivity of Compacted Platinum Powder at Very Low Temperatures, Phys. Rev. Lett. 82, 4528 (1999).

DOI: 10.1103/physrevlett.82.4528

Google Scholar

[10] T. Takezawa, H. Nagara, and N. Suzuki, Ab initio calculations of superconductivity in palladium under pressure, Phys. Rev. B 71, 012515 (2005).

DOI: 10.1103/physrevb.71.012515

Google Scholar

[11] G. Y. Guo, Ab initio calculation of intrinsic spin Hall conductivity of Pd and Au, J. Appl. Phys. 105, 07C701 (2009).

DOI: 10.1063/1.3054362

Google Scholar

[12] S. Baroni, P. Giannozzi, and A. Testa, Green's-function approach to linear response in solids, Phys. Rev. Lett. 58, 1861 (1987).

DOI: 10.1103/physrevlett.58.1861

Google Scholar

[13] S. Baroni, S. D. Gironcoli, A. D. Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, 515 (2001).

DOI: 10.1103/revmodphys.73.515

Google Scholar

[14] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. D. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21, 395502 (2009).

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[15] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23, 5048 (1981).

DOI: 10.1103/physrevb.23.5048

Google Scholar

[16] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41, 7892 (1990).

DOI: 10.1103/physrevb.41.7892

Google Scholar

[17] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[18] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188 (1976).

DOI: 10.1103/physrevb.13.5188

Google Scholar

[19] Z. L. Liu, J. H. Yang, L. C. Cai, F. Q. Jing, and D. Alfè, Structural and thermodynamic properties of compressed palladium: Ab initio and molecular dynamics study, Phys. Rev. B 83, 144113 (2011).

DOI: 10.1103/physrevb.83.144113

Google Scholar

[20] B. Allen and R. C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 12, 905 (1975).

DOI: 10.1103/physrevb.12.905

Google Scholar

[21] W. L. McMillan, Transition Temperature of Strong-Coupled Superconductors, Phys. Rev. 167, 331 (1968).

DOI: 10.1103/physrev.167.331

Google Scholar

[22] G. M. Eliashberg, Sov. Phys. -JETP 16, 780 (1962).

Google Scholar

[23] P. B. Allen and B. Mitrovic, Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1982).

Google Scholar

[24] S. K. Bose, T. Kato, and O. Jepsen, Superconductivity in boron under pressure: A full-potential linear muffin-tin orbitals study, Phys. Rev. B 72, 184509 (2005).

DOI: 10.1103/physrevb.72.184509

Google Scholar

[25] S. Y. Savrasov and D. Y. Savrasov, Electron-phonon interactions and related physical properties of metals from linear-response theory, Phys. Rev. B 54, 16487 (1996).

DOI: 10.1103/physrevb.54.16487

Google Scholar

[26] F. J. Pinski and W. H. Butler, Calculated electron-phonon contributions to phonon linewidths and to the electronic mass enhancement in Pd, Phys. Rev. B 19, 6010 (1979).

DOI: 10.1103/physrevb.19.6010

Google Scholar