[1]
Q. Zhang, B.L. Xiao, P. Xue, Z.Y. Ma: Microstructural evolution and mechanical properties of ultrafi ne grained Al3Ti/Al–5. 5Cu composites produced via hot pressing and subsequent friction stir processing, Materials Chemistry and Physics. 134 (2012).
DOI: 10.1016/j.matchemphys.2012.02.068
Google Scholar
[2]
Aruna Patel, S. Das B.K. Prasad: Compressive deformation behaviour of Al alloy (2014)–10 wt. % SiCp composite: Effects of strain rates and temperatures, Materials Science and Engineering A. 530 (2011) 225–232.
DOI: 10.1016/j.msea.2011.09.078
Google Scholar
[3]
Kiyoshi Mizuuchi , Kanryu Inoue , Yasuyuki Agari , Toru Nagaoka , Masami Sugioka : Processing of Al/SiC composites in continuous solid–liquid co-existent state by SPS and their thermal properties, Composites: Part B. 43 (2012) 2012–(2019).
DOI: 10.1016/j.compositesb.2012.02.004
Google Scholar
[4]
Weizhi Luan, Chuanhai Jiang, HaoweiWang: Investigation for recrystallization behavior of shot peened layer on TiB2/6351Al composite using X-ray diffraction, Materials Science and Engineering A. 496 (2008) 36–39.
DOI: 10.1016/j.msea.2008.04.045
Google Scholar
[5]
S.C.V. Lim, A.D. Rollett: Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu–Nb composite, Materials Science and Engineering A. 520 (2009) 189–196.
DOI: 10.1016/j.msea.2009.05.020
Google Scholar
[6]
Chuan-hai Jiang, Chang-qing Ye and Bo Hong: X-ray Diffraction Analysis of the Recrystallization Behaviorof SiCw/Al Composite at High Temperature, Materials Transactions. 46 (2005) 2125-2128.
DOI: 10.2320/matertrans.46.2125
Google Scholar
[7]
L. Ceschini, G. Minak, A. Morri, F. Tarterini: Forging of the AA6061/23 vol. %Al2O3p composite: Effects on microstructure and tensile properties. Materials Science and Engineering A. 513–514 (2009) 176–184.
DOI: 10.1016/j.msea.2009.01.057
Google Scholar
[8]
R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett: Current Issues In Recrystallisation: A Review, Mater. Sci. Eng. A. 238 (1997) 219–274.
DOI: 10.1016/s0921-5093(97)00424-3
Google Scholar
[9]
X.J. Wang, X.S. Hu, K.B. Nie, K.K. Deng, K. Wu, M.Y. Zheng: Dynamic recrystallization behavior of particle reinforced Mg matrix composites fabricated by stir casting. Materials Science and Engineering A. 545 (2012) 38– 43.
DOI: 10.1016/j.msea.2012.02.077
Google Scholar
[10]
Ling Cheng, Degui Zhu, Ying Gao: Microstructure and properties of in situ fabricated Al-5wt. %Si-Al2O3 composites. Advanced Materials Research. 567(2012)15-20.
DOI: 10.4028/www.scientific.net/amr.567.15
Google Scholar
[11]
C.S. Ramesh, S. Pramod, R. Keshavamurthy: A study on microstructure and mechanical properties of Al 6061–TiB2 in-situ composites, Materials Science and Engineering A. 528 (2011) 4125–4132.
DOI: 10.1016/j.msea.2011.02.024
Google Scholar
[12]
A. Dolatkhah , P. Golbabaei, M.K. Besharati Givi, F. Molaiekiya: Investigating effects of process parameters on microstructural and mechanicalproperties of Al5052/SiC metal matrix composite fabricated via friction stirprocessing, Materials and Design. 37 (2012).
DOI: 10.1016/j.matdes.2011.09.035
Google Scholar
[13]
K.K. Deng , X.J. Wang, M.Y. Zheng , K. Wu: Dynamic recrystallization behavi or during hot deformation and mechanical properties of 0. 2 mm SiCp reinforced Mg matrix composite, Materials Science & Engineering A. 560 (2013) 824–830.
DOI: 10.1016/j.msea.2012.10.044
Google Scholar
[14]
Zhang Peng, Li Fuguo: Dynamic Recrystallization Model of SiC Particle Reinforced Aluminum Matrix Composites, Rare metal materials and Engineering. 39(2010) 1166-1170.
DOI: 10.1016/s1875-5372(10)60123-3
Google Scholar
[15]
E. Koken, N. Chandrasekaran, J.D. Embury, G. Burger: The role of particle distribution in recrystallization in two phase alloys, Mater. Sci. Eng. A. 104(1988) 163–168.
DOI: 10.1016/0025-5416(88)90418-1
Google Scholar
[16]
Roohollah Jamaati , Mohammad Reza Toroghinejad , Jan Dutkiewicz , Jerzy A. Szpunar : Investigation of nanostructured Al/Al2O3 composite produced by accumulative roll bonding process, Materials and Design. 35 (2012) 37–42.
DOI: 10.1016/j.matdes.2011.09.040
Google Scholar