Effect of Solution Annealing and Low Temperature Ageing on the Microstructures and Superelastic Behaviour of Ti-50.7at.%Ni Alloy

Article Preview

Abstract:

In this study a plate form of Ti-50.7at.%Ni was subjected to solution annealing at 800°C and 900°C for one hour followed by ageing at 300°C and 400°C for 4 hours respectively in order to investigate the effect of solution annealing and low temperature ageing on the microstructures and superelastic behaviour. It was found that the formation of Ti3Ni4 precipitates on the samples aged at 300°C and 400°C influences superelasticity differently. Increasing the testing temperature up to 38°C generally increases the superelasticity of samples for all heat treatment conditions compared to those tested at 22°C, however the sample solution annealed at 900°C give better superelasticity at 22°C due to excessive plastic deformation at higher temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-80

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Miyazaki, K. Otsuka, Metal. Trans. A 17A (1986) 53-63.

Google Scholar

[2] M. Paryab, A. Nasr, O. Bayat, V. Abouei, A. Eshraghi, MjoM 16(2) (2010) 123-131.

Google Scholar

[3] Z. He and M. Liu, Mater. Sci. Eng. B 117 (2012) 986-991.

Google Scholar

[4] L.P. Chen, N.C. Si, Journal of Alloys and Compounds 448 (2008) 219–222.

Google Scholar

[5] R.A.A. Aguiar, M.A. Savi, P.M.C.L. Pacheco, Smart Mater. Struct. 19 (2010) 1–9.

Google Scholar

[6] Y. Soga, H. Doi, T. Yoneyama, Materials in Medicine 11 (2000) 695–700.

Google Scholar

[7] D. Chrobak, D. Stroz˙ , Scripta Materialia 52 (2005) 575–760.

Google Scholar

[8] R.R. Adharapurapu, K.S. Vecchio, Experimental Mechanics 47 (2007) 365–371.

Google Scholar

[9] Q. Wang, Z. He, Y. Wang, J. Yang, Acta Metallurgica Sinica 46 (2010) 800–804.

Google Scholar

[10] V.N. Khachin, V.E. Gunther, V.P. Sivokha, A.S. Savvinov, Proc. of ICOMAT-79 (1979) 474-479.

Google Scholar

[11] H.C. Ling and R. Kaplow, Metall. Trans. A 11A (1980) 77-83.

Google Scholar

[12] J. Uchil, K. Ganesh Kumara, K.K. Mahesh, Mater. Sci. Eng. A 332 (2002) 25–28.

Google Scholar

[13] X. Ren, N. Miura, J. Zhang, K. Otsuka, M. Koiwa, T. Suzuki, Mater. Sci. Eng. A 312 (2001) 196–206.

Google Scholar

[14] J. Khalil Allafi, X. Ren, G. Eggeler, Acta Mater. 50 (2002) 793.

Google Scholar

[15] F. Jiang, Y. Liu, H. Yang, L. Li, Y. Zheng, Acta Mater. 57 (2009) 4773–4781.

Google Scholar

[16] M.E. Mitwally, M. Farag, Mater. Sci. Eng. A. 519 (2009) 155–166.

Google Scholar

[17] H.C. Lin and S.K. Wu, Acta Metall Et Mater 41(5) 1994 1623-30.

Google Scholar

[18] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice-Hall Inc., New Jersey, (2001).

Google Scholar

[19] P. Filtp and K. Mazanec, Scripta Metall. Mater, 32(9) (1995) 1375-1380.

Google Scholar

[20] H.C. Lin, S.K. Wu, T.S. Chou, H.P. Kao, Acta Metall. Mater. 39 (1991) 2069–(2080).

Google Scholar

[21] H.C. Lin, S.K. Wu, Metall. Trans. A 24 (1993) 293–299.

Google Scholar

[22] W.C. Crone, D. Wu, J.H. Perepezko, Mater. Sci. Eng. A 375–377 (2004) 1177–1181.

Google Scholar

[23] K. Otsuka, X. Ren, Progress in Mater Sci 50 (2005) 511-678.

Google Scholar

[24] Y. Liu, V. Humbeeck V, R. Stalmans, L. Delaey, J Alloys Compounds 247 (1) 1997 115-21.

Google Scholar