p.201
p.205
p.212
p.216
p.221
p.227
p.233
p.240
p.246
Investigation on Dynamic Compressive Properties of Carbon Fiber Cloth-Reinforced Titanium Alloy
Abstract:
Cu-coated carbon fiber cloth/Ti-6Al-4V composite (Cu-Cf/TC4) and uncoated-Cf/TC4 were fabricated by spark plasma sintering (SPS) method. The microstructure and dynamic compression properties of the Cf/TC4 composites were investigated. Results show that the matrix-fiber interfacial bonging in uncoated-Cf/TC4 is weaker than in Cu-Cf/TC4. Moreover, lamellar TiC exists throughout the TC4 matrix in uncoated-Cf/TC4, while there is no TiC generated in TC4 matrix of Cu-Cf/TC4. Dynamic compressive tests indicate the stress-strain curves of Cu-Cf/TC4 and uncoated-Cf/TC4 show no difference at a strain rate of 2500 s-1, while show significant difference at a strain rate of 4800 s-1. Further investigations find: (1) at a strain rate of 2500 s-1, the reinforcement effect of Cf on Cu-Cf/TC4 is similar to TiC on uncoated-Cf/TC4, explaining the exact similarity in compressive property of Cu-Cf/TC4 and uncoated-Cf/TC4; (2) at a strain rate of 4800 s-1 the reinforcement effect of Cf on Cu-Cf/TC4 is far more than TiC on uncoated-Cf/TC4, explaining the higher compressive strength of Cu-Cf/TC4; moreover, multiple debonding of carbon fiber and its squeezing into TC4 matrix constitute an important energy absorption mechanism for uncoated-Cf/TC4, explaining the better plasticity of uncoated-Cf/TC4.
Info:
Periodical:
Pages:
221-226
Citation:
Online since:
October 2013
Authors:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: