Performance Improvement of MFCs by Treatment of Carbon Cloth Anode with Ultrasonic or Spent Anolyte

Article Preview

Abstract:

In order to improve the power generation of microbial fuel cells (MFCs), carbon cloth anode was treated with ultrasonic or spent anolyte in this work. The maximum power density of a single-chamber air-cathode MFC was improved from 611.5 mW/m2 to 754.3 mW/m2 and 811.7 mW/m2, and the reactor start-up time was shortened by 7.3% and 22.7% respectively after treatments of the anode with ultrasonic and spent anolyte. Polarization tests reveal that the treated anodes have a smaller electrode polarization at high current densities than the control. MFCs with the treated anodes exhibited lower internal resistances than the untreated anode, which may arise from the enhanced substrate oxidation activity and extra-cellular electron transfer efficiency on these anodes. Results from this study indicated that treatment of anode with ultrasonic or spent anolyte was a simple and effective approach for improving the performance of MFCs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

409-414

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial Fuel Cells: Methodology and Technology, Environ. Sci. Technol. 40 (2006) 5181-5192.

DOI: 10.1021/es0605016

Google Scholar

[2] M. Zhou, M. Chi, J. Luo, H. He, T. Jin, An overview of electrode materials in microbial fuel cells, J. Power Sources 196 (2011) 4427-4435.

DOI: 10.1016/j.jpowsour.2011.01.012

Google Scholar

[3] J. Wei, P. Liang, X. Huang, Recent progress in electrodes for microbial fuel cells, Bioresource Technol. 102 (2011) 9335-9344.

DOI: 10.1016/j.biortech.2011.07.019

Google Scholar

[4] S. Cheng, B.E. Logan, Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells, Electrochem. Commun. 9 (2007) 492-496.

DOI: 10.1016/j.elecom.2006.10.023

Google Scholar

[5] K. Scott, G.A. Rimbu, K.P. Katuri, K.K. Prasad, I.M. Head, Application of Modified Carbon Anodes in Microbial Fuel Cells, Process Saf. Environ. 85 (2007) 481-488.

DOI: 10.1205/psep07018

Google Scholar

[6] Y. Feng, Q. Yang, X. Wang, B.E. Logan, Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells, J J. Power Sources 195 (2010) 1841-1844.

DOI: 10.1016/j.jpowsour.2009.10.030

Google Scholar

[7] Y. Zou, C. Xiang, L. Yang, L. -X. Sun, F. Xu, Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, Int. J. Hydrogen Energ. 33 (2008) 4856-4862.

DOI: 10.1016/j.ijhydene.2008.06.061

Google Scholar

[8] T. Sharma, A.L. Mohana Reddy, T.S. Chandra, S. Ramaprabhu, Development of carbon nanotubes and nanofluids based microbial fuel cell, Int. J. Hydrogen Energ. 33 (2008) 6749-6754.

DOI: 10.1016/j.ijhydene.2008.05.112

Google Scholar

[9] D.A. Lowy, L.M. Tender, J.G. Zeikus, D.H. Park, D.R. Lovley, Harvesting energy from the marine sediment-water interface II: Kinetic activity of anode materials, Biosens. Bioelectron. 21 (2006) 2058-(2063).

DOI: 10.1016/j.bios.2006.01.033

Google Scholar

[10] W. Liu, J. Zhang, C. Cheng, G. Tian, C. Zhang, Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co(II) from aqueous solutions, Chem. Eng. J. 175 (2011) 24-32.

DOI: 10.1016/j.cej.2011.09.004

Google Scholar

[11] F. Yu, J. Ji, Z. Xu, H. Liu, Effect of ultrasonic power on the structure of activated carbon and the activities of Ru/AC catalyst, Ultrasonics 44 (2006) 389-392.

DOI: 10.1016/j.ultras.2006.05.005

Google Scholar

[12] X. Wang, S. Cheng, Y. Feng, M.D. Merrill, T. Saito, B.E. Logan, Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells, Environ. Sci. Technol. 43 (2009) 6870-6874.

DOI: 10.1021/es900997w

Google Scholar

[13] H. Cai, J. Wang, Y. Bu, Q. Zhong, Treatment of carbon cloth anodes for improving power generation in a dual-chamber microbial fuel cell, J. Chem. Technol. Biot. 88 (2012) 623-628.

DOI: 10.1002/jctb.3875

Google Scholar

[14] S. Cheng, H. Liu, B.E. Logan, Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing, Environ. Sci. Technol. 40 (2006) 2426-2432.

DOI: 10.1021/es051652w

Google Scholar

[15] S. Cheng, J. Wu, Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells, Bioelectrochemistry 92 (2013) 22-26.

DOI: 10.1016/j.bioelechem.2013.03.001

Google Scholar

[16] D.R. Lovley, E.J.P. Phillips, Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese, Appl. Environ. Microb. 54 (1988) 1472-1480.

DOI: 10.1128/aem.54.6.1472-1480.1988

Google Scholar

[17] U. Schroder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys. 9 (2007) 2619-2629.

DOI: 10.1039/b703627m

Google Scholar

[18] J.P. Busalmen, A. Esteve-Nuñez, J.M. Feliu, Whole Cell Electrochemistry of Electricity-Producing Microorganisms Evidence an Adaptation for Optimal Exocellular Electron Transport, Environ. Sci. Technol. 42 (2008) 2445-2450.

DOI: 10.1021/es702569y

Google Scholar

[19] C. Léger, S.J. Elliott, K.R. Hoke, L.J.C. Jeuken, A.K. Jones, F.A. Armstrong, Enzyme Electrokinetics:  Using Protein Film Voltammetry To Investigate Redox Enzymes and Their Mechanisms, Biochemistry 42 (2003) 8653-8662.

DOI: 10.1021/bi034789c

Google Scholar

[20] K. Yokoyama, Y. Kayanuma, Cyclic Voltammetric Simulation for Electrochemically Mediated Enzyme Reaction and Determination of Enzyme Kinetic Constants, Anal. Chem. 70 (1998) 3368-3376.

DOI: 10.1021/ac9711807

Google Scholar