Research and Application of Heat Transfer Fluids in Solar Thermal Power

Article Preview

Abstract:

mproving the thermophysical properties of heat transfer fluid is always a research hotspot and difficult subject in the application of solar energy for medium and high temperature. The research and application of these heat transfer fluid, including steam, heat transfer oil, molten salt, air, liquid alloy and nanofluids, were summarized in this paper. After comparing their characteristics, it is found that molten salt, air and liquid alloy have greater application and development prospects. Future research directions include extending the temperature span of operating condition, enhancing the efficiency of heat transfer and storage, lengthening service life and finding out the correlation between microstructure and related performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

415-422

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Afshar, R. Saidur, M. Hasanuzzaman, et al., A review of thermodynamics and heat transfer in solar refrigeration system, Renewable and Sustainable Energy Reviews. 16 (2012) 5639-5648.

DOI: 10.1016/j.rser.2012.05.016

Google Scholar

[2] T. M. Pavlovic, I. S. Radonjic, D. D. Milosavljevic, et al., A review of concentrating solar power plants in the world and their potential use in Serbia, Renewable & Sustainable Energy Reviews. 16 (2012) 3891-3902.

DOI: 10.1016/j.rser.2012.03.042

Google Scholar

[3] R. K. McGovern, W. J. Smith, Optimal concentration and temperatures of solar thermal power plants, Energy Conversion and Management. 60 (2012) 226-232.

DOI: 10.1016/j.enconman.2011.11.032

Google Scholar

[4] YB. Yao, T. Xie, YM. Gao. Handbook of Chemistry and Physics. Shanghai: Shanghai Scientific and Technical Publishers, (1985).

Google Scholar

[5] S. Jaisankar, J. Ananth, S. Thulasi, et al., A comprehensive review on solar water heaters, Renewable and Sustainable Energy Reviews. 15 (2011) 3045-3050.

DOI: 10.1016/j.rser.2011.03.009

Google Scholar

[6] YL. Yang, L. Ye, The Technique of Solar Tower Power Plant and its Application Prospect in China, Journal of Liuzhou Vocational and Technical College. (2012) 43-47.

Google Scholar

[7] ZC. Xiong, Deterioration Factors of Heat Transfer Fluids and Its Preventive Measures, Synthetic Lubricants. (2011) 25-27.

Google Scholar

[8] L. Olson, J. Ambrosek, G. Cao, et al., Molten Salts for Nuclear Cogeneration, in: Fox K, Hoffman E, Manjooran N, Pickrell G, Advances in Materials Science for Environmental and Nuclear Technology, 2010, pp.145-156.

DOI: 10.1002/9780470930991.ch14

Google Scholar

[9] DW. Zeng, W. Voigt, Phase diagram calculation of molten salt hydrates using the modified BET equation, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry. 27 (2003) 243-251.

DOI: 10.1016/j.calphad.2003.09.004

Google Scholar

[10] A. Redkin, Y. Zaikov, O. Tkatcheva, et al., A physical model of molten salt data, Zeitschrift Fur Naturforschung Section a-a Journal of Physical Sciences. 63 (2008) 462-466.

DOI: 10.1515/zna-2008-7-813

Google Scholar

[11] O. Jaber, G. F. Naterer, I. Dincer, Convective heat transfer from molten salt droplets in a direct contact heat exchanger, Heat and Mass Transfer. 46 (2010) 999-1012.

DOI: 10.1007/s00231-010-0630-6

Google Scholar

[12] XP. Yang, XX. Yang, J. Ding, et al., Criteria for performance improvement of a molten salt thermocline storage system, Applied Thermal Engineering. 48 (2012) 24-31.

DOI: 10.1016/j.applthermaleng.2012.04.046

Google Scholar

[13] Y. Marcus, Heat capacities of molten salts with polyatomic anions, Thermochimica Acta. 495 (2009) 81-84.

DOI: 10.1016/j.tca.2009.06.003

Google Scholar

[14] R. Ferri, A. Cammi, D. Mazzei, Molten salt mixture properties in RELAP5 code for thermodynamic solar applications, International Journal of Thermal Sciences. 47 (2008) 1676-1687.

DOI: 10.1016/j.ijthermalsci.2008.01.007

Google Scholar

[15] D. Brosseau, J. W. Kelton, D. Ray, et al., Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants, Journal of Solar Energy Engineering-Transactions of the Asme. 127 (2005).

DOI: 10.1115/isec2004-65144

Google Scholar

[16] R. W. Bradshaw, J. G. Cordaro, N. P. Siegel, et al. Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems, (2009).

DOI: 10.1115/es2009-90140

Google Scholar

[17] YC. Chen, YT. Wu, et al., Experimental study of viscosity characteristics of high-temperature heat transfer molten salts, Science China-Technological Sciences. 54 (2011) 3022-3026.

DOI: 10.1007/s11431-011-4530-x

Google Scholar

[18] Q. Peng, J. Ding, XL. Wei, et al., The preparation and properties of multi-component molten salts, Applied Energy. 87 (2010) 2812-2817.

DOI: 10.1016/j.apenergy.2009.06.022

Google Scholar

[19] J. W. Raade, D. Padowitz, Development of molten salt heat transfer fluid with low melting point and high thermal stability, Transactions of the ASME-N-Journal of Solar Energy Engineering. 133 (2011) 31013.

DOI: 10.1115/1.4004243

Google Scholar

[20] J. G. Cordaro, N. C. Rubin, R. W. Bradshaw, Multicomponent Molten Salt Mixtures Based on Nitrate/Nitrite Anions, Journal of Solar Energy Engineering-Transactions of the Asme. 133 (2011) 011014.

DOI: 10.1115/1.4003418

Google Scholar

[21] S. Guillot, A. Faik, A. Rakhmatullin, et al., Corrosion effects between molten salts and thermal storage material for concentrated solar power plants, Applied Energy. 94 (2012) 174-181.

DOI: 10.1016/j.apenergy.2011.12.057

Google Scholar

[22] L. C. Olson, J. W. Ambrosek, K. Sridharan, et al., Materials corrosion in molten LiF-NaF-KF salt, Journal of Fluorine Chemistry. 130 (2009) 67-73.

DOI: 10.1016/j.jfluchem.2008.05.008

Google Scholar

[23] U. Herrmann, D. W. Kearney, Survey of thermal energy storage for parabolic trough power plants, Journal of Solar Energy Engineering-Transactions of the Asme. 124 (2002) 145-152.

DOI: 10.1115/1.1467601

Google Scholar

[24] SQ. Zhan, JM. Zhou, Y. Wu, et al., Dynamic Measurement of Thermophysical Properties of Molten Salt and Error Correction Method, CIESC Journal. (2012) 2341-2347.

Google Scholar

[25] M. M. Alkilani, K. Sopian, M. A. Alghoul, et al., Review of solar air collectors with thermal storage units, Renewable & Sustainable Energy Reviews. 15 (2011) 1476-1490.

DOI: 10.1016/j.rser.2010.10.019

Google Scholar

[26] M. Abtew, G. Selvaduray, Lead-free solders in microelectronics, Materials Science & Engineering R-Reports. 27 (2000) 95-141.

DOI: 10.1016/s0927-796x(00)00010-3

Google Scholar

[27] A. A. El-Daly, Y. Swilem, M. H. Makled, et al., Thermal and mechanical properties of Sn-Zn-Bi lead-free solder alloys, Journal of Alloys and Compounds. 484 (2009) 134-142.

DOI: 10.1016/j.jallcom.2009.04.108

Google Scholar

[28] D. Chen, J. Shu, J. Li, et al., Analysis on Heat Transfer Characteristic of Lead-Bismuth Tutectic Alloy Applied in Solar Thermal Power Generation, Journal of Power Engineering. No. 167 (2008) 812-815.

Google Scholar

[29] G. Ilincev, Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb-Bi on structural materials with and without corrosion inhibitors, Nuclear Engineering and Design. 217 (2002) 167-177.

DOI: 10.1016/s0029-5493(02)00158-9

Google Scholar

[30] T. Furukawa, G. Muller, G. Schumacher, et al., Effect of oxygen concentration and temperature on compatibility of ODS steel with liquid, Stagnant Pb45Bi55, Journal of Nuclear Materials. 335 (2004) 189-193.

DOI: 10.1016/j.jnucmat.2004.07.016

Google Scholar

[31] H. A. Mohammed, G. Bhaskaran, N. H. Shuaib, et al., Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review, Renewable & Sustainable Energy Reviews. 15 (2011) 1502-1512.

DOI: 10.1016/j.rser.2010.11.031

Google Scholar

[32] W. Yu, D. M. France, E. V. Timofeeva, et al., Comparative review of turbulent heat transfer of nanofluids, International Journal of Heat and Mass Transfer. 55 (2012) 5380-5396.

DOI: 10.1016/j.ijheatmasstransfer.2012.06.034

Google Scholar

[33] S. Peyghambarzadeh, S. Hashemabadi, M. Seifi Jamnani, et al., Improving the cooling performance of automobile radiator with Al2O3/water nanofluid, Applied Thermal Engineering. 31 (2011) 1833-1838.

DOI: 10.1016/j.applthermaleng.2011.02.029

Google Scholar

[34] S. Pandey, V. Nema, Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger, Experimental Thermal and Fluid Science. 38 (2012) 284-256.

DOI: 10.1016/j.expthermflusci.2011.12.013

Google Scholar

[35] R. Lotfi, A. Rashidi, A. Amrollahi, Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer. 39 (2012) 108-111.

DOI: 10.1016/j.icheatmasstransfer.2011.10.002

Google Scholar

[36] M. Giraldo, D. Sanin, W. F. Florez, Heat transfer in nanofluids: A computational evaluation of the effects of particle motion, Applied Mathematics and Computation. 219 (2012) 3308-3315.

DOI: 10.1016/j.amc.2011.08.056

Google Scholar

[37] Z. Haddad, H. F. Oztop, E. Abu-Nada, et al., A review on natural convective heat transfer of nanofluids, Renewable & Sustainable Energy Reviews. 16 (2012) 5363-5378.

DOI: 10.1016/j.rser.2012.04.003

Google Scholar

[38] JZ. Zhang, High Temperature Molten Salt and Its Application in Chemical Production, Science and Technology in Chemical Industry. (2000) 52-54.

Google Scholar

[39] H. Price, E. Lupfert, D. Kearney, et al., Advances in parabolic trough solar power technology, Journal of Solar Energy Engineering, Transactions of the ASME. 124 (2002) 109-125.

DOI: 10.1115/1.1467922

Google Scholar