[1]
O. Afshar, R. Saidur, M. Hasanuzzaman, et al., A review of thermodynamics and heat transfer in solar refrigeration system, Renewable and Sustainable Energy Reviews. 16 (2012) 5639-5648.
DOI: 10.1016/j.rser.2012.05.016
Google Scholar
[2]
T. M. Pavlovic, I. S. Radonjic, D. D. Milosavljevic, et al., A review of concentrating solar power plants in the world and their potential use in Serbia, Renewable & Sustainable Energy Reviews. 16 (2012) 3891-3902.
DOI: 10.1016/j.rser.2012.03.042
Google Scholar
[3]
R. K. McGovern, W. J. Smith, Optimal concentration and temperatures of solar thermal power plants, Energy Conversion and Management. 60 (2012) 226-232.
DOI: 10.1016/j.enconman.2011.11.032
Google Scholar
[4]
YB. Yao, T. Xie, YM. Gao. Handbook of Chemistry and Physics. Shanghai: Shanghai Scientific and Technical Publishers, (1985).
Google Scholar
[5]
S. Jaisankar, J. Ananth, S. Thulasi, et al., A comprehensive review on solar water heaters, Renewable and Sustainable Energy Reviews. 15 (2011) 3045-3050.
DOI: 10.1016/j.rser.2011.03.009
Google Scholar
[6]
YL. Yang, L. Ye, The Technique of Solar Tower Power Plant and its Application Prospect in China, Journal of Liuzhou Vocational and Technical College. (2012) 43-47.
Google Scholar
[7]
ZC. Xiong, Deterioration Factors of Heat Transfer Fluids and Its Preventive Measures, Synthetic Lubricants. (2011) 25-27.
Google Scholar
[8]
L. Olson, J. Ambrosek, G. Cao, et al., Molten Salts for Nuclear Cogeneration, in: Fox K, Hoffman E, Manjooran N, Pickrell G, Advances in Materials Science for Environmental and Nuclear Technology, 2010, pp.145-156.
DOI: 10.1002/9780470930991.ch14
Google Scholar
[9]
DW. Zeng, W. Voigt, Phase diagram calculation of molten salt hydrates using the modified BET equation, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry. 27 (2003) 243-251.
DOI: 10.1016/j.calphad.2003.09.004
Google Scholar
[10]
A. Redkin, Y. Zaikov, O. Tkatcheva, et al., A physical model of molten salt data, Zeitschrift Fur Naturforschung Section a-a Journal of Physical Sciences. 63 (2008) 462-466.
DOI: 10.1515/zna-2008-7-813
Google Scholar
[11]
O. Jaber, G. F. Naterer, I. Dincer, Convective heat transfer from molten salt droplets in a direct contact heat exchanger, Heat and Mass Transfer. 46 (2010) 999-1012.
DOI: 10.1007/s00231-010-0630-6
Google Scholar
[12]
XP. Yang, XX. Yang, J. Ding, et al., Criteria for performance improvement of a molten salt thermocline storage system, Applied Thermal Engineering. 48 (2012) 24-31.
DOI: 10.1016/j.applthermaleng.2012.04.046
Google Scholar
[13]
Y. Marcus, Heat capacities of molten salts with polyatomic anions, Thermochimica Acta. 495 (2009) 81-84.
DOI: 10.1016/j.tca.2009.06.003
Google Scholar
[14]
R. Ferri, A. Cammi, D. Mazzei, Molten salt mixture properties in RELAP5 code for thermodynamic solar applications, International Journal of Thermal Sciences. 47 (2008) 1676-1687.
DOI: 10.1016/j.ijthermalsci.2008.01.007
Google Scholar
[15]
D. Brosseau, J. W. Kelton, D. Ray, et al., Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants, Journal of Solar Energy Engineering-Transactions of the Asme. 127 (2005).
DOI: 10.1115/isec2004-65144
Google Scholar
[16]
R. W. Bradshaw, J. G. Cordaro, N. P. Siegel, et al. Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems, (2009).
DOI: 10.1115/es2009-90140
Google Scholar
[17]
YC. Chen, YT. Wu, et al., Experimental study of viscosity characteristics of high-temperature heat transfer molten salts, Science China-Technological Sciences. 54 (2011) 3022-3026.
DOI: 10.1007/s11431-011-4530-x
Google Scholar
[18]
Q. Peng, J. Ding, XL. Wei, et al., The preparation and properties of multi-component molten salts, Applied Energy. 87 (2010) 2812-2817.
DOI: 10.1016/j.apenergy.2009.06.022
Google Scholar
[19]
J. W. Raade, D. Padowitz, Development of molten salt heat transfer fluid with low melting point and high thermal stability, Transactions of the ASME-N-Journal of Solar Energy Engineering. 133 (2011) 31013.
DOI: 10.1115/1.4004243
Google Scholar
[20]
J. G. Cordaro, N. C. Rubin, R. W. Bradshaw, Multicomponent Molten Salt Mixtures Based on Nitrate/Nitrite Anions, Journal of Solar Energy Engineering-Transactions of the Asme. 133 (2011) 011014.
DOI: 10.1115/1.4003418
Google Scholar
[21]
S. Guillot, A. Faik, A. Rakhmatullin, et al., Corrosion effects between molten salts and thermal storage material for concentrated solar power plants, Applied Energy. 94 (2012) 174-181.
DOI: 10.1016/j.apenergy.2011.12.057
Google Scholar
[22]
L. C. Olson, J. W. Ambrosek, K. Sridharan, et al., Materials corrosion in molten LiF-NaF-KF salt, Journal of Fluorine Chemistry. 130 (2009) 67-73.
DOI: 10.1016/j.jfluchem.2008.05.008
Google Scholar
[23]
U. Herrmann, D. W. Kearney, Survey of thermal energy storage for parabolic trough power plants, Journal of Solar Energy Engineering-Transactions of the Asme. 124 (2002) 145-152.
DOI: 10.1115/1.1467601
Google Scholar
[24]
SQ. Zhan, JM. Zhou, Y. Wu, et al., Dynamic Measurement of Thermophysical Properties of Molten Salt and Error Correction Method, CIESC Journal. (2012) 2341-2347.
Google Scholar
[25]
M. M. Alkilani, K. Sopian, M. A. Alghoul, et al., Review of solar air collectors with thermal storage units, Renewable & Sustainable Energy Reviews. 15 (2011) 1476-1490.
DOI: 10.1016/j.rser.2010.10.019
Google Scholar
[26]
M. Abtew, G. Selvaduray, Lead-free solders in microelectronics, Materials Science & Engineering R-Reports. 27 (2000) 95-141.
DOI: 10.1016/s0927-796x(00)00010-3
Google Scholar
[27]
A. A. El-Daly, Y. Swilem, M. H. Makled, et al., Thermal and mechanical properties of Sn-Zn-Bi lead-free solder alloys, Journal of Alloys and Compounds. 484 (2009) 134-142.
DOI: 10.1016/j.jallcom.2009.04.108
Google Scholar
[28]
D. Chen, J. Shu, J. Li, et al., Analysis on Heat Transfer Characteristic of Lead-Bismuth Tutectic Alloy Applied in Solar Thermal Power Generation, Journal of Power Engineering. No. 167 (2008) 812-815.
Google Scholar
[29]
G. Ilincev, Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb-Bi on structural materials with and without corrosion inhibitors, Nuclear Engineering and Design. 217 (2002) 167-177.
DOI: 10.1016/s0029-5493(02)00158-9
Google Scholar
[30]
T. Furukawa, G. Muller, G. Schumacher, et al., Effect of oxygen concentration and temperature on compatibility of ODS steel with liquid, Stagnant Pb45Bi55, Journal of Nuclear Materials. 335 (2004) 189-193.
DOI: 10.1016/j.jnucmat.2004.07.016
Google Scholar
[31]
H. A. Mohammed, G. Bhaskaran, N. H. Shuaib, et al., Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review, Renewable & Sustainable Energy Reviews. 15 (2011) 1502-1512.
DOI: 10.1016/j.rser.2010.11.031
Google Scholar
[32]
W. Yu, D. M. France, E. V. Timofeeva, et al., Comparative review of turbulent heat transfer of nanofluids, International Journal of Heat and Mass Transfer. 55 (2012) 5380-5396.
DOI: 10.1016/j.ijheatmasstransfer.2012.06.034
Google Scholar
[33]
S. Peyghambarzadeh, S. Hashemabadi, M. Seifi Jamnani, et al., Improving the cooling performance of automobile radiator with Al2O3/water nanofluid, Applied Thermal Engineering. 31 (2011) 1833-1838.
DOI: 10.1016/j.applthermaleng.2011.02.029
Google Scholar
[34]
S. Pandey, V. Nema, Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger, Experimental Thermal and Fluid Science. 38 (2012) 284-256.
DOI: 10.1016/j.expthermflusci.2011.12.013
Google Scholar
[35]
R. Lotfi, A. Rashidi, A. Amrollahi, Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer. 39 (2012) 108-111.
DOI: 10.1016/j.icheatmasstransfer.2011.10.002
Google Scholar
[36]
M. Giraldo, D. Sanin, W. F. Florez, Heat transfer in nanofluids: A computational evaluation of the effects of particle motion, Applied Mathematics and Computation. 219 (2012) 3308-3315.
DOI: 10.1016/j.amc.2011.08.056
Google Scholar
[37]
Z. Haddad, H. F. Oztop, E. Abu-Nada, et al., A review on natural convective heat transfer of nanofluids, Renewable & Sustainable Energy Reviews. 16 (2012) 5363-5378.
DOI: 10.1016/j.rser.2012.04.003
Google Scholar
[38]
JZ. Zhang, High Temperature Molten Salt and Its Application in Chemical Production, Science and Technology in Chemical Industry. (2000) 52-54.
Google Scholar
[39]
H. Price, E. Lupfert, D. Kearney, et al., Advances in parabolic trough solar power technology, Journal of Solar Energy Engineering, Transactions of the ASME. 124 (2002) 109-125.
DOI: 10.1115/1.1467922
Google Scholar