[1]
F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhögl, M. Liebau, E. Unger and W. Hönlein, Microelectron. Eng. 64 (2002) 399-408.
DOI: 10.1016/s0167-9317(02)00814-6
Google Scholar
[2]
C. Cantalini, L. Valentini, I. Armentano, J. M. Kenny, L. Lozzi and S. Santucci, J. Eur. Ceram. Soc. 24 (2004) 1405-1408.
DOI: 10.1016/s0955-2219(03)00441-2
Google Scholar
[3]
J. Suehiro, G. B. Zhou, H. Imakiire, W. D. Ding and M. Hara, Sens. Actuators, B 108 (2005) 398-403.
Google Scholar
[4]
R. H. Baughman, A. A. Zakhidov and W. A. Heer, Science 297 (2002) 787-792.
Google Scholar
[5]
J. Zhao, A. Buldum, J. Han and J. P. Lu, Nanotechnology 13 (2002) 195-200.
Google Scholar
[6]
L. Dai, P. Soundarrajan and T. Kim, Pure Appl. Chem. 74 (2002) 1753-1772.
Google Scholar
[7]
H. Chang, J. D. Lee, S. M. Lee and Y. H. Lee, Appl. Phys. Lett. 79 (2001) 3863-3865.
Google Scholar
[8]
W. S. Cho, S. I. Moon, Y. D. Lee, Y. H. Lee, J. H. Park and B. K. Ju, IEEE Electron Device Lett. 26 (2005) 498-500.
Google Scholar
[9]
Q. Zhao, Z. Gan and Q. Zhuang, Electroanalysis 14 (2002) 1609-1613.
Google Scholar
[10]
A. Star, V. Joshi, S. Skarupo, D. Thomas and J. C. P. Gabriel, J. Phys. Chem. B 110 (2006) 21014-21020.
DOI: 10.1021/jp064371z
Google Scholar
[11]
D. R. Kauffman and A. Star, Angew. Chem. Int. Edn 47 (2008) 6550-6570.
Google Scholar
[12]
C. Y. Lee, S. Baik, J. Zhang, R. I. Masel and M. S. Strano, J. Phys. Chem. B 110 (2006) 11055-11061.
Google Scholar
[13]
K. Cattanach, R. D. Kulkarni, M. Kozlov and S. K. Manohar, Nanotechnology 17 (2006) 4123-4128.
DOI: 10.1088/0957-4484/17/16/022
Google Scholar
[14]
E. S. Snow and F. K. Perkins, Nano Lett. 5 (2005) 2414-2417.
Google Scholar
[15]
E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu and T. L. Reinecke, Science 307 (2005) 1942-(1945).
Google Scholar
[16]
J. Kong, M. G. Chapline and H. J. Dai, Adv. Mater. 13 (2001) 1384-1386.
Google Scholar
[17]
K. H. An, S. Y. Jeong, H. R. Hwang and Y. H. Lee, Adv. Mater. 16 (2004) 1005-1009.
Google Scholar
[18]
E. Bekyarova, M. Davis, T. Burch, M. E. Itkis, B. Zhao, S. Sunshine and R. C. Haddon, J. Phys. Chem. B 108 (2004) 19717-19720.
DOI: 10.1021/jp0471857
Google Scholar
[19]
L. Al-Mashat, K. Shin, K. Kalantar-zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kanar, D. Li, X. Gou, S. J. Ippolito and W. Wlodarski, J. Phys. Chem. C, 114 (2010) 16168-16173.
DOI: 10.1021/jp103134u
Google Scholar
[20]
W. Q. Han and A. Zettl, Nano. Lett. 3 (2003) 681-683.
Google Scholar
[21]
E. S. Forzani, X. L. Li, P. M. Zhang, N. J. Tao, R. Zhang, I. Amlani, R. Tsui and L. A. Nagahara, Small 2 (2006) 1283-1291.
DOI: 10.1002/smll.200600185
Google Scholar
[22]
A. Z. Sadek, W. Wlodarski, K. Kalantar-Zadeh, C. Baker, R. B. Kaner, Sensor. Actuat. A-Phys., 139 (2007) 53-57.
Google Scholar
[23]
Z. Du, C. Li, L. Li, H. Yu, Y. Wang, T. Wang, J. Mater. Sci-Mater. EL., 22 (2011) 418-421.
Google Scholar
[24]
R. Mangu, S. Rajaputra, V. P. Singh, Nanotechnology, 22 (2011) 215502.
Google Scholar
[25]
M. Ding, Y. Tang, P. Gou, M. J. Reber, A. Star, Adv. Mater., 23 (2011) 536-540.
Google Scholar
[26]
S. Srivastava, S. S. Sharma, S. Agrawal, S. Kumar, M. Singh, Y. K. Vijay, Synth. Met., 160 (2010) 529-534.
Google Scholar
[27]
Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, Nanotechnology, 20 (2009) 345502.
Google Scholar
[28]
N. Hu, Y. Wang, J. Chai, R. Gao, Z. Yang, E. S. W. Kong, Y. Zhang, Sensor. Actuat. B 163 (2012) 107-114.
Google Scholar
[29]
Y. Wang, Z. Yang, Z. Hou, D. Xu, L. Wei, E. S. W. Kong, Y. Zhang, Sensor. Actuat. B 150 (2010) 708-714.
Google Scholar
[30]
Y. Wang, N. Hu, Z. Zhou, D. Xu, Z. Wang, Z. Yang, H. Wei, E. S. W. Kong, Y. Zhang, J. Mater. Chem., 21 (2011) 3779-3787.
Google Scholar
[31]
Y. Wang, Z. Wang, N. Hu, L. Wei, D. Xu, H. Wei, E. S. W. Kong, Y. Zhang, J. Nanosci. Nanotechno., 11 (2011) 4874-4781.
Google Scholar
[32]
B. Timmer, W. Olthuis, A. V. D. Berg, Sen. and Actuators B 107 (2005) 666-677.
Google Scholar