Gas Sensors Based on Deposited Single-Walled Carbon Nanotubes-Polypyrrole Networks for Ammonia Detection

Article Preview

Abstract:

In this work, we demonstrate excellent gas sensors based on single-walled carbon nanotubes (SWNTs)-polypyrrole (PPy) networks for the detection of ammonia (NH3) gas. The SWNTs networks were deposited on oxidized silicon surface functionalized with 3-aminopropytrimethysilane. The Fe3+ ions were easily adsorbed on the surface of SWNTs by ion exchange process. After deposition of PPy molecules on the surface of SWNTs by chemical vapor polymerization process in a sealed container with pyrrole vapors, SWNTs-PPy networks were formed. By the combination of traditional silicon processes, SWNTs-PPy networks-based gas sensors were fabricated at a wafer scale. The sensitive properties of the resultant gas sensors for the detection of NH3 gas were investigated at room temperature. And the results suggested that the gas sensors based on SWNTs-PPy networks exhibited excellent sensitivity to NH3 gas. This new method is very simple, which holds great potential in the wide spread practical production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

501-507

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhögl, M. Liebau, E. Unger and W. Hönlein, Microelectron. Eng. 64 (2002) 399-408.

DOI: 10.1016/s0167-9317(02)00814-6

Google Scholar

[2] C. Cantalini, L. Valentini, I. Armentano, J. M. Kenny, L. Lozzi and S. Santucci, J. Eur. Ceram. Soc. 24 (2004) 1405-1408.

DOI: 10.1016/s0955-2219(03)00441-2

Google Scholar

[3] J. Suehiro, G. B. Zhou, H. Imakiire, W. D. Ding and M. Hara, Sens. Actuators, B 108 (2005) 398-403.

Google Scholar

[4] R. H. Baughman, A. A. Zakhidov and W. A. Heer, Science 297 (2002) 787-792.

Google Scholar

[5] J. Zhao, A. Buldum, J. Han and J. P. Lu, Nanotechnology 13 (2002) 195-200.

Google Scholar

[6] L. Dai, P. Soundarrajan and T. Kim, Pure Appl. Chem. 74 (2002) 1753-1772.

Google Scholar

[7] H. Chang, J. D. Lee, S. M. Lee and Y. H. Lee, Appl. Phys. Lett. 79 (2001) 3863-3865.

Google Scholar

[8] W. S. Cho, S. I. Moon, Y. D. Lee, Y. H. Lee, J. H. Park and B. K. Ju, IEEE Electron Device Lett. 26 (2005) 498-500.

Google Scholar

[9] Q. Zhao, Z. Gan and Q. Zhuang, Electroanalysis 14 (2002) 1609-1613.

Google Scholar

[10] A. Star, V. Joshi, S. Skarupo, D. Thomas and J. C. P. Gabriel, J. Phys. Chem. B 110 (2006) 21014-21020.

DOI: 10.1021/jp064371z

Google Scholar

[11] D. R. Kauffman and A. Star, Angew. Chem. Int. Edn 47 (2008) 6550-6570.

Google Scholar

[12] C. Y. Lee, S. Baik, J. Zhang, R. I. Masel and M. S. Strano, J. Phys. Chem. B 110 (2006) 11055-11061.

Google Scholar

[13] K. Cattanach, R. D. Kulkarni, M. Kozlov and S. K. Manohar, Nanotechnology 17 (2006) 4123-4128.

DOI: 10.1088/0957-4484/17/16/022

Google Scholar

[14] E. S. Snow and F. K. Perkins, Nano Lett. 5 (2005) 2414-2417.

Google Scholar

[15] E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu and T. L. Reinecke, Science 307 (2005) 1942-(1945).

Google Scholar

[16] J. Kong, M. G. Chapline and H. J. Dai, Adv. Mater. 13 (2001) 1384-1386.

Google Scholar

[17] K. H. An, S. Y. Jeong, H. R. Hwang and Y. H. Lee, Adv. Mater. 16 (2004) 1005-1009.

Google Scholar

[18] E. Bekyarova, M. Davis, T. Burch, M. E. Itkis, B. Zhao, S. Sunshine and R. C. Haddon, J. Phys. Chem. B 108 (2004) 19717-19720.

DOI: 10.1021/jp0471857

Google Scholar

[19] L. Al-Mashat, K. Shin, K. Kalantar-zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kanar, D. Li, X. Gou, S. J. Ippolito and W. Wlodarski, J. Phys. Chem. C, 114 (2010) 16168-16173.

DOI: 10.1021/jp103134u

Google Scholar

[20] W. Q. Han and A. Zettl, Nano. Lett. 3 (2003) 681-683.

Google Scholar

[21] E. S. Forzani, X. L. Li, P. M. Zhang, N. J. Tao, R. Zhang, I. Amlani, R. Tsui and L. A. Nagahara, Small 2 (2006) 1283-1291.

DOI: 10.1002/smll.200600185

Google Scholar

[22] A. Z. Sadek, W. Wlodarski, K. Kalantar-Zadeh, C. Baker, R. B. Kaner, Sensor. Actuat. A-Phys., 139 (2007) 53-57.

Google Scholar

[23] Z. Du, C. Li, L. Li, H. Yu, Y. Wang, T. Wang, J. Mater. Sci-Mater. EL., 22 (2011) 418-421.

Google Scholar

[24] R. Mangu, S. Rajaputra, V. P. Singh, Nanotechnology, 22 (2011) 215502.

Google Scholar

[25] M. Ding, Y. Tang, P. Gou, M. J. Reber, A. Star, Adv. Mater., 23 (2011) 536-540.

Google Scholar

[26] S. Srivastava, S. S. Sharma, S. Agrawal, S. Kumar, M. Singh, Y. K. Vijay, Synth. Met., 160 (2010) 529-534.

Google Scholar

[27] Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, Nanotechnology, 20 (2009) 345502.

Google Scholar

[28] N. Hu, Y. Wang, J. Chai, R. Gao, Z. Yang, E. S. W. Kong, Y. Zhang, Sensor. Actuat. B 163 (2012) 107-114.

Google Scholar

[29] Y. Wang, Z. Yang, Z. Hou, D. Xu, L. Wei, E. S. W. Kong, Y. Zhang, Sensor. Actuat. B 150 (2010) 708-714.

Google Scholar

[30] Y. Wang, N. Hu, Z. Zhou, D. Xu, Z. Wang, Z. Yang, H. Wei, E. S. W. Kong, Y. Zhang, J. Mater. Chem., 21 (2011) 3779-3787.

Google Scholar

[31] Y. Wang, Z. Wang, N. Hu, L. Wei, D. Xu, H. Wei, E. S. W. Kong, Y. Zhang, J. Nanosci. Nanotechno., 11 (2011) 4874-4781.

Google Scholar

[32] B. Timmer, W. Olthuis, A. V. D. Berg, Sen. and Actuators B 107 (2005) 666-677.

Google Scholar