Flame Retardancy of Polypropelene/LDHs Composites: An Influence of Organo-LDH Types

Article Preview

Abstract:

Organic-LDHs was prepared by three methods including co-precipitation, ionexchange and roast reduction process using Lauryl alcohol phosphoric acid ester potassium (MAPK) asmodifier.Polypropylene (PP)/Organically-modified layered double hydroxides (LDH) was prepared by the melt blending method. The structures and morphologies of composites were characterized by X-ray diffraction and TEM. TGA, cone calorimeter, limiting oxygen index (LOI) and the UL94 protocol were used to characterize the thermal stability and fire properties of composites. The results indicate that MAPK was successfully intercalated into the interlayer of LDHs and MAPK has a different arrangement in the interlayer of organicLDHs for different preparation methods of LDHs. PP/ionexchangeorganicLDHs (PP/ion-o-LDHs) and PP/roast reductionorganicLDHs (PP/ro-o-LDHs) show a better dispersion of LDH in PP than PP/co-precipitationorganicLDHs (PP/co-o-LDHs) composites. Compared to pristine PP, the peak heat release rate of PP/10% co-o-LDHs, PP/10% ion-o-LDHs and PP/10% ro-o-LDHs decreased by 21%, 33% and 30% respectively. The limiting oxygen index increased by 3.7 from 17.2(in PP) to 20.9(in PP/10% ion-o-LDHs). All of the composites could obtain an HB in the UL-94 horizontal burning.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

478-483

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. B Marosfoi, S. Garas,B. Bodzay, F. Zubonyai, and G. Marosi. Adv. Technol., 2008. 19(6): pp.693-700.

DOI: 10.1002/pat.1153

Google Scholar

[2] J. Kaspersma, C. Doumen,S. Munro, and A. prins. Polym. Degrad. Stab., 2002. 77(2): pp.325-331.

Google Scholar

[3] F. Laoutid,L. Bonnaud,M. Alexandre, and Ph. Dubois. Mater. Sci. Eng.: R: Reports, 2009. 63(3): pp.100-125.

Google Scholar

[4] L.J. Wang, X.J. He, and C.A. Wilkie. Materials, 2010. 3(9): pp.4580-4606.

Google Scholar

[5] A. Dasari, S. H. Lim, Z. Z. Yu, Y. -W. Mai, Aust. J. Chem. 2007, 60, 496-518.

Google Scholar

[6] A. Dasari, Z. Z. Yu, Y. -W. Mai, S. L. Liu. Nanotechnology 2007, 18, 445602.

Google Scholar

[7] S. Wang, Y. Hu, R. Zong. Appl. Clay. Sci., 2004. 25(1-2): pp.49-55.

Google Scholar

[8] F. Sheng, X. Tang, S, Zhang. Adv. Technol, 2012. 23(2): pp.137-142.

Google Scholar

[9] C. Zeng, L.J. Lee. Macromonglecules 2001; 34: 4098.

Google Scholar

[10] E. Manias, A. Touny ,L. Wu, K. Strahecker, B. Lu,T.C. Chung. Chem Mater, 2001; 13: 3516.

Google Scholar

[11] Y.S. Choi, K.H. Wang, M. Xu, and I.J. Chung. Chem Mater, 2002; 14: 2936.

Google Scholar

[12] Y.K. Kim, Y.S. Choi, K.H. Wang, Chung I.J. Chem Mater 2002; 14: 4990.

Google Scholar

[13] X. Li,Z. Zhan, G. Peng, and W. Wang. Appl. Clay Sci., 2012. 55: pp.168-172.

Google Scholar

[14] W. Chen, Q. Qu. Chem Mater 2003; 15: 3208.

Google Scholar

[15] W. Chen, L. Feng,B. Qu. Chem Mater 2004; 16: 368.

Google Scholar

[16] L.J. Wang, X.L. Xie, S. Su, J. Feng, and C.A. Wilkie. Polym. Degrad. Stab, 2010. 95(4): pp.572-578.

Google Scholar

[19] P. Ding, W. Chen, and B.J. Qu, Prog. Nat. Sci., 16, 573(2006).

Google Scholar

[20] L.J. Wang, X.J. He, and C.A. Wilkie. Adv. Technol. 2011. 22(7): pp.1131-1138.

Google Scholar

[21] L.J. Wang, X.L. Xie, S. Su, J. Feng, and C.A. Wilkie. Polym. Degrad. Stab, 2009. 94(5): pp.770-781.

Google Scholar