Fabrication of Nanostructured Hydrophobic Surfaces with Laser Interference Lithography

Article Preview

Abstract:

The fabrication of large area nanoscale periodic structures on material surfaces for hydrophobicity engineering has been difficult due to the complex processes. Here we propose a two-step fabrication method for periodic nanostructures by combining laser interference lithography (LIL) and reactive ion etching (RIE). Sub-micron periodic nanotip patterns are fabricated in the photoresist by LIL, and then transferred into the silicon substrate using RIE. By measuring the contact angle (CA) of a water droplet on the substrate surface, the wettability of the surface with nanotip structures of various periods is studied. Our experiments show that the nanotip structures fabricated by the combined LIL and RIE process deliver satisfactory hydrophobic tendencies when the periods fall into the submicron scale. When the period of the structure is small enough, the hydrophilicity of the surface can be altered into hydrophobicity. The hydrophobicity achieved by this method is reusable and sustainable with low cost and no composition alteration comparing to chemical methods. The process developed in this work provides potential applications in biosensingand digital fluidics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

457-464

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir 21 (2005) 956-961.

DOI: 10.1021/la0401011

Google Scholar

[2] M. Washizu, Electrostatic actuation of liquid droplets for micro-reactor applications, Industry Applications, IEEE Transactions on 34 (1998) 732-737.

DOI: 10.1109/28.703965

Google Scholar

[3] BHJ Hofstee, Protein binding by agarose carrying hydrophobic groups in conjunction with charges, Biochem Bioph Res Co 50 (1973) 751-757.

DOI: 10.1016/0006-291x(73)91308-9

Google Scholar

[4] M. M. Diogo, J. A. Queiroz, G. A. Monteiro, SAM Martins, GNM Ferreira, and DMF Prazeres, Purification of a cystic fibrosis plasmid vector for gene therapy using hydrophobic interaction chromatography, Biotechnol Bioeng 68 (2000) 576-583.

DOI: 10.1002/(sici)1097-0290(20000605)68:5<576::aid-bit13>3.0.co;2-5

Google Scholar

[5] Khurram M. Sunasara, Fang Xia, Robert S. Gronke, and Steven M. Cramer, Application of hydrophobic interaction displacement chromatography for an industrial protein purification, Biotechnol Bioeng 82 (2003) 330-339.

DOI: 10.1002/bit.10582

Google Scholar

[6] N. T. Southall, K. A. Dill and ADJ Haymet, A view of the hydrophobic effect, The Journal of Physical Chemistry B 106 (2002) 521-533.

DOI: 10.1021/jp015514e

Google Scholar

[7] T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, Super-water-repellent fractal surfaces, Langmuir 12 (1996) 2125-2127.

DOI: 10.1021/la950418o

Google Scholar

[8] W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Öner, J. Youngblood, and T. J. McCarthy, Ultrahydrophobic and ultralyophobic surfaces: some comments and examples, Langmuir 15 (1999) 3395-3399.

DOI: 10.1021/la990074s

Google Scholar

[9] M. Ma, Y. Mao, M. Gupta, K. K. Gleason, and G. C. Rutledge, Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition, Macromolecules 38 (2005) 9742-9748.

DOI: 10.1021/ma0511189

Google Scholar

[10] H. Y. Erbil, A. L. Demirel, Y. Avcı, and O. Mert, Transformation of a simple plastic into a superhydrophobic surface, Science 299 (2003) 1377-1380.

DOI: 10.1126/science.1078365

Google Scholar

[11] J. Bico, C. Marzolin and D. Quéré, Pearl drops, EPL (Europhysics Letters) 47 (1999) 220-226.

DOI: 10.1209/epl/i1999-00548-y

Google Scholar

[12] A. Pozzato, S. D. Zilio, G. Fois, D. Vendramin, G. Mistura, M. Belotti, Y. Chen, and M. Natali, Superhydrophobic surfaces fabricated by nanoimprint lithography, Microelectron Eng 83 (2006) 884-888.

DOI: 10.1016/j.mee.2006.01.012

Google Scholar

[13] D. Öner and T. J. McCarthy, Ultrahydrophobic surfaces. Effects of topography length scales on wettability, Langmuir 16 (2000) 7777-7782.

DOI: 10.1021/la000598o

Google Scholar

[14] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, Super‐Hydrophobic Surfaces: From Natural to Artificial, Adv Mater 14 (2002) 1857-1860.

DOI: 10.1002/adma.200290020

Google Scholar

[15] E. Hosono, S. Fujihara, I. Honma, M. Ichihara, and H. Zhou, Fabrication of Nano/Micro Hierarchical FeO∕ Ni Micrometer-Wire Structure and Characteristics for High Rate Li Rechargeable Battery, J Electrochem Soc 153 (2006) A1273-A1278.

DOI: 10.1149/1.2195887

Google Scholar

[16] D. Xia, Z. Ku, S. C. Lee, and SRJ Brueck, Nanostructures and functional materials fabricated by interferometric lithography, Adv Mater 23 (2011) 147-179.

DOI: 10.1002/adma.201001856

Google Scholar

[17] Y. L. Yang, C. C. Hsu, T. L. Chang, L. S. Kuo, and P. H. Chen, Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interference lithography, Appl Surf Sci 256 (2010) 3683-3687.

DOI: 10.1016/j.apsusc.2010.01.006

Google Scholar

[18] D. Xia and SRJ Brueck, Strongly anisotropic wetting on one-dimensional nanopatterned surfaces, Nano Lett 8 (2008) 2819-2824.

DOI: 10.1021/nl801394w

Google Scholar

[19] C. H. Choi and C. J. Kim, Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control, Nanotechnology 17 (2006) 5326-5333.

DOI: 10.1088/0957-4484/17/21/007

Google Scholar

[20] Gottlieb S. Oehrlein, R. M. Tromp, J. C. Tsang, Y. H. Lee, and E. J. Petrillo, Near‐Surface Damage and Contamination after CF 4/H 2 Reactive Ion Etching of Si, J Electrochem Soc 132 (1985) 1441-1447.

DOI: 10.1149/1.2114140

Google Scholar

[21] Hyung-Ho Park, Kwang-Ho Kwon, Sang-Hwan Lee, Byung-HwaKoak, SahnNahm, Hee-Tae Lee, Kyoung-Ik Cho, Oh-Joon Kwon, and Y. I. Kang, A study on modified silicon surface after CHF3/C2F6 reactive ion etching, Etri J 16 (1994) 45.

DOI: 10.4218/etrij.94.0194.0014

Google Scholar

[22] J. Yoo, Kyunghae Kim, M. Thamilselvan, N. Lakshminarayn, Young Kuk Kim, Jaehyeong Lee, Kwon Jong Yoo, and Junsin Yi, RIE texturing optimization for thin c-Si solar cells in SF6/O2 plasma, Journal of Physics D: Applied Physics 41 (2008) 125205.

DOI: 10.1088/0022-3727/41/12/125205

Google Scholar

[23] E. S. Gadelmawla, M. M. Koura, TMA Maksoud, I. M. Elewa, and H. H. Soliman, Roughness parameters, J Mater Process Tech 123 (2002) 133-145.

DOI: 10.1016/s0924-0136(02)00060-2

Google Scholar

[24] Y. C. Jung and B. Bhushan, Wetting transition of water droplets on superhydrophobic patterned surfaces, Scripta Mater 57 (2007) 1057-1060.

DOI: 10.1016/j.scriptamat.2007.09.004

Google Scholar

[25] ABD Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (1944) 546-551.

DOI: 10.1039/tf9444000546

Google Scholar

[26] Robert N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem 28 (1936) 988-994.

DOI: 10.1021/ie50320a024

Google Scholar

[27] X. M. Li, D. Reinhoudt and M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces, Chem. Soc. Rev. 36 (2007) 1350-1368.

DOI: 10.1039/b602486f

Google Scholar