[1]
S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, S. Niki, Fabrication of wide-gap Cu(In1-xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness, Sol. Energy Mater. Sol. Cells 87 (2005).
DOI: 10.1016/j.solmat.2004.08.017
Google Scholar
[2]
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 36), Prog. Photovolt.: Res. Appl. 18 (2010) 346-352.
DOI: 10.1002/pip.1021
Google Scholar
[3]
A. Dhingra, A. Rothwarf, Computer simulation and modeling of the graded bandgap CuInSe2/CdS solar cell, in: Conference Record of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, KY, 1993: 475-480.
DOI: 10.1109/pvsc.1993.347135
Google Scholar
[4]
V.F. Gremenok, E.P. Zaretskaya, V.B. Zalesski, K. Bente, W. Schmitz, R.W. Martin, H. Moller, Preparation of Cu(In, Ga)Se2 thin film solar cells by two-stage selenization process using N2 gas, Sol. Energy Mater. Sol. Cells 89 (2005) 129-137.
DOI: 10.1016/j.solmat.2004.11.014
Google Scholar
[5]
O. Lundberg, J. Lu, A. Rockett, M. Edoff, L. Stolt, Diffusion of indium and gallium in Cu(In, Ga)Se2 thin film solar cells, J. Phys. Chem. Solids, 64 (2003) 1499-1504.
DOI: 10.1016/s0022-3697(03)00127-6
Google Scholar
[6]
D.J. Schroeder, G.D. Berry, A. Rockett, Gallium diffusion and diffusivity in CuInSe2 epitaxial layers, Appl. Phys. Lett. 69 (1996) 4068-4070.
DOI: 10.1063/1.117820
Google Scholar
[7]
A.P. Kumar, K.V. Reddy, Lateral self-diffusion of selenium in CuInSe2 thin films, Thin Solid Films 304 (1997) 365-370.
DOI: 10.1016/s0040-6090(97)00039-4
Google Scholar
[8]
H.J. von Bardeleben, Selenium self-diffusion study in the 1-3-62 semiconductor: CuInSe2, J. Appl. Phys. 56 (1984) 321-326.
Google Scholar
[9]
M. Marudachalam, H. Hichri, R.W. Birkmire, J.M. Schultz, A.B. Swartzlander, M.M. Al-Jassim, Diffusion of In and Ga in selenized Cu-In and Cu-Ga precursors, IEEE 25th Photovoltaic Specialists Conference, Washington D.C., 1996: 805-807.
DOI: 10.1109/pvsc.1996.564250
Google Scholar
[10]
M. Marudachalam, R.W. Birkmire, H. Hichri, Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films, J. Appl. Phys. 82 (1997) 2869-2905.
DOI: 10.1063/1.366122
Google Scholar
[11]
T. Walter, H.W. Schock, Crystal growth and diffusion in Cu(In, Ga)Se2 chalcopyrite thin films, Thin Solid Films 224 (1993) 74-81.
DOI: 10.1016/0040-6090(93)90461-w
Google Scholar
[12]
J. Wang, Y.F. Zhang, F. Dong, J. Zhu, Ga-grading profiles formed by incorporation of gallium into Cu(In1-xGax)Se2 absorber thin films, Appl. Surf. Sci. 258 (2012) 8636-8640.
DOI: 10.1016/j.apsusc.2012.05.065
Google Scholar
[13]
F. Kang, J.P. Ao, G.Z. Sun, Q. He, Y. Sun, Properties of CuInxGa1-xSe2 thin films grown from electrodeposited precursors with different levels of selenium content, Curr. Appl. Phys. 10 (2010) 886-888.
DOI: 10.1016/j.cap.2009.10.015
Google Scholar
[14]
F.B. Dejene, The optical and structural properties of polycrystalline Cu(In, Ga)(Se, S)2 absorber thin films, J. Mater. Sci. 46 (2011) 6981-6987.
DOI: 10.1007/s10853-011-5666-6
Google Scholar
[15]
M. Marudachalam, H. Hichri, R. Klenk, R.W. Birkmire, W.N. Shafarman, J.M. Schultz, Preparation of homogenous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere, Appl. Phys. Lett. 67 (1995) 3978-3980.
DOI: 10.1063/1.114424
Google Scholar
[16]
R. Caballero, C. Guillén, Comparative studies between Cu-Ga-Se and Cu-In-Se thin film systems, Thin Solid Films 403-404 (2002) 107-111.
DOI: 10.1016/s0040-6090(01)01537-1
Google Scholar
[17]
A. Celik, U. Cevik, E. Bacaksiz, N. Celik, Nickel diffusion in polycrystalline CuInSe2 thin films with a <112> fiber texture, Thin Solid Films 517 (2009) 2851-2854.
DOI: 10.1016/j.tsf.2008.10.046
Google Scholar