Diffusion Coefficients of Selenium and Gallium during the Cu(In1-xGax)Se2 Thin Films Preparation Process

Article Preview

Abstract:

Cu (In1-xGax)Se2 (CIGS) polycrystalline thin films with Ga-gradient structures were prepared by selenization of sputtered Cu-In-Ga precursors. The Ga contents of the as-selenized CIGS thin films were measured by EDS. With greater Ga content, the peaks in the diffraction pattern become broadened. Auger electron spectroscopy was used to measure the composition distribution of the Cu, In, Ga, and Se elements in the CIGS and CuInSe2 films. At 300°C, the diffusion coefficients DSe was approximately (6.7±1.0) x 10-16 m2s-1, and DGa was about (4.5±1.0) x 10-18 m2s-1. DSe are two orders of magnitude greater than DGa, which is also the reason why the selected CIGS film was almost completely selenized, but still able to keep certain Ga-grading profile. The temperature used in this work is within the low temperature range of the two-step selenization approach, which is more suitable for low-cost substrates like flexible substrates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

448-453

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, S. Niki, Fabrication of wide-gap Cu(In1-xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness, Sol. Energy Mater. Sol. Cells 87 (2005).

DOI: 10.1016/j.solmat.2004.08.017

Google Scholar

[2] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 36), Prog. Photovolt.: Res. Appl. 18 (2010) 346-352.

DOI: 10.1002/pip.1021

Google Scholar

[3] A. Dhingra, A. Rothwarf, Computer simulation and modeling of the graded bandgap CuInSe2/CdS solar cell, in: Conference Record of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, KY, 1993: 475-480.

DOI: 10.1109/pvsc.1993.347135

Google Scholar

[4] V.F. Gremenok, E.P. Zaretskaya, V.B. Zalesski, K. Bente, W. Schmitz, R.W. Martin, H. Moller, Preparation of Cu(In, Ga)Se2 thin film solar cells by two-stage selenization process using N2 gas, Sol. Energy Mater. Sol. Cells 89 (2005) 129-137.

DOI: 10.1016/j.solmat.2004.11.014

Google Scholar

[5] O. Lundberg, J. Lu, A. Rockett, M. Edoff, L. Stolt, Diffusion of indium and gallium in Cu(In, Ga)Se2 thin film solar cells, J. Phys. Chem. Solids, 64 (2003) 1499-1504.

DOI: 10.1016/s0022-3697(03)00127-6

Google Scholar

[6] D.J. Schroeder, G.D. Berry, A. Rockett, Gallium diffusion and diffusivity in CuInSe2 epitaxial layers, Appl. Phys. Lett. 69 (1996) 4068-4070.

DOI: 10.1063/1.117820

Google Scholar

[7] A.P. Kumar, K.V. Reddy, Lateral self-diffusion of selenium in CuInSe2 thin films, Thin Solid Films 304 (1997) 365-370.

DOI: 10.1016/s0040-6090(97)00039-4

Google Scholar

[8] H.J. von Bardeleben, Selenium self-diffusion study in the 1-3-62 semiconductor: CuInSe2, J. Appl. Phys. 56 (1984) 321-326.

Google Scholar

[9] M. Marudachalam, H. Hichri, R.W. Birkmire, J.M. Schultz, A.B. Swartzlander, M.M. Al-Jassim, Diffusion of In and Ga in selenized Cu-In and Cu-Ga precursors, IEEE 25th Photovoltaic Specialists Conference, Washington D.C., 1996: 805-807.

DOI: 10.1109/pvsc.1996.564250

Google Scholar

[10] M. Marudachalam, R.W. Birkmire, H. Hichri, Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films, J. Appl. Phys. 82 (1997) 2869-2905.

DOI: 10.1063/1.366122

Google Scholar

[11] T. Walter, H.W. Schock, Crystal growth and diffusion in Cu(In, Ga)Se2 chalcopyrite thin films, Thin Solid Films 224 (1993) 74-81.

DOI: 10.1016/0040-6090(93)90461-w

Google Scholar

[12] J. Wang, Y.F. Zhang, F. Dong, J. Zhu, Ga-grading profiles formed by incorporation of gallium into Cu(In1-xGax)Se2 absorber thin films, Appl. Surf. Sci. 258 (2012) 8636-8640.

DOI: 10.1016/j.apsusc.2012.05.065

Google Scholar

[13] F. Kang, J.P. Ao, G.Z. Sun, Q. He, Y. Sun, Properties of CuInxGa1-xSe2 thin films grown from electrodeposited precursors with different levels of selenium content, Curr. Appl. Phys. 10 (2010) 886-888.

DOI: 10.1016/j.cap.2009.10.015

Google Scholar

[14] F.B. Dejene, The optical and structural properties of polycrystalline Cu(In, Ga)(Se, S)2 absorber thin films, J. Mater. Sci. 46 (2011) 6981-6987.

DOI: 10.1007/s10853-011-5666-6

Google Scholar

[15] M. Marudachalam, H. Hichri, R. Klenk, R.W. Birkmire, W.N. Shafarman, J.M. Schultz, Preparation of homogenous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere, Appl. Phys. Lett. 67 (1995) 3978-3980.

DOI: 10.1063/1.114424

Google Scholar

[16] R. Caballero, C. Guillén, Comparative studies between Cu-Ga-Se and Cu-In-Se thin film systems, Thin Solid Films 403-404 (2002) 107-111.

DOI: 10.1016/s0040-6090(01)01537-1

Google Scholar

[17] A. Celik, U. Cevik, E. Bacaksiz, N. Celik, Nickel diffusion in polycrystalline CuInSe2 thin films with a <112> fiber texture, Thin Solid Films 517 (2009) 2851-2854.

DOI: 10.1016/j.tsf.2008.10.046

Google Scholar