Laser Cladding of Fluoridated Hydroxyapatite Coatings on Titanium Alloy for Bone Replacement Structures

Article Preview

Abstract:

Bone-like fluoridated hydroxyapatite (FHA) coatings were prepared on Ti-6Al-4V substrates (TC4) by using laser cladding. This bioceramic coating was fabricated by adding CaF2 micron-particles into the hydroxyapatite before presetted on the Ti alloy substrate and radiated by laser beam which aimed at obtaining lower solubility, fine thermostability and maintaining the comparable bioactivity and biocompatibility. Coatings, which were processed using a Nd:YAG laser cladding, presented FHA crystallization on the surface with a uniform morphology along the coating cross-section and no significant dilution of the titanium alloy was observed. Phase analysis by X-ray diffraction indicated the generation of fluoridated hydroxyapatite phase in the laser cladded coatings. The coatings showed the formation of a metallurgically sound and diffused substrate-coating interface, which significantly increased bonding strength between the coatings and subtrate. The bioactive coatings afforded favourable bone bioactivity by inducing the rapid precipitation of apatite on their surface when immersed in a simulated body fluid (SBF). The work demonstrated the potential of using laser cladding for fabricating fluoridated hydroxyapatite bioceramic coatings on Ti alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

540-546

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sivakumar M, Manjubala I. Mater Lett 50 (2001) 199–205.

Google Scholar

[2] Kumar R R, Wang M. Mater Lett 55(2002) 133–7.

Google Scholar

[3] Wang J, Chao Y L, Wan Q B, Zhu Z M, Yu H Y. Acta Biomaterialia 5 (2009) 1798–1807.

Google Scholar

[4] D S Brauer, et al. Acta Biomaterialia 68 (2010) 3275 –3282.

Google Scholar

[5] Qu H B, Wei M. Acta Biomaterialia 2 (2006) 113–119.

Google Scholar

[6] Wei M, Vellinga D, Leavesley D, Evans J, Upton Z. Key Eng Mater(2003)240–242;671–674.

Google Scholar

[7] Li T T, Lee J H, Kobayashi T, Aoki H. Mater Sci-Mater Med (1996) 355–357.

Google Scholar

[8] Milev A, Kannangara GSK, Ben-Nissan B. Mater Lett 57 (2003) 1960–5.

Google Scholar

[9] Stoch A, Brozek A, Kmita G, Stoch J, Jastrzebski W. Mole Struct 596 (2001) 191–200.

Google Scholar

[10] Jalota S, Bhaduriand S B, Tas A C. Mater Sci Eng C 27 (2007) 432–40.

Google Scholar

[11] Hamdi M, Hakamata S, Ektessabi A M. Thin Solid Films 484 (2000) 377–378.

DOI: 10.1016/s0040-6090(00)01276-1

Google Scholar

[12] Bao Q, Chen C, Wang D, Ji Q, Lei T. Appl Surf Sci 252 (2005) 1538–1544.

Google Scholar

[13] Xue W, Tao S, Liu X, Zheng XB, Ding C. Biomaterials 25 (2004) 415–421.

Google Scholar

[14] Weng J, Liu XG, Li XD, Zhang XD. Biomaterials 16 (1995) 39–44.

Google Scholar

[15] Cheang P, Khor KA. Biomaterials 17 (1996) 537–544.

Google Scholar

[16] F. Lusquiños. Journal of Materials Science: Materials in Medicine, 13 (2002) 601-605.

Google Scholar

[17] F. Lusquiños, J. Pou, M. Boutinguiza, F. Quintero, R. Soto. Appl Surf Sci 247 (2005) 486–492.

Google Scholar

[18] Zhu WD, Liu QB, Zheng . Journal of Biomedical Materials Research Part A, 11 (2008) 429–433.

Google Scholar

[19] Min Z, Ding F, Xiu KL, Wen FL, Qi BL, Jian BZ. Appl Surf Sci 255 (2008) 426–428.

Google Scholar

[20] Deng C, Wang Y, Zhang YP. Journal of iron and steel research international 4(2007) 73-78.

Google Scholar

[21] Wang DG, Chen CZ, Ma J, Zhang G. Colloids and Surfaces B: Biointerfaces 66(2008) 155–162.

Google Scholar

[22] Wang DG, Chen CZ, Ma J, Lei TQ. Appl Surf Sci 253 (2007) 4016–4020.

Google Scholar

[23] Cheng G J, Pirzada D. Materials Science and Engineering C 25 (2005) 541 – 547.

Google Scholar

[24] Cheng G J, Ye C. Journal of Biomedical Materials Research Part A. 1 (2010) 70–79.

Google Scholar

[25] Wei M, Vellinga D, Leavesley D, Evans J, Upton Z. Key Eng Mater (2003) 240–242; 671–674.

DOI: 10.4028/www.scientific.net/kem.240-242.671

Google Scholar

[26] Sundfeldt M, Widmark M, Wennerberg A. Mater Sci Mater Med 13 (2002) 1037–43.

Google Scholar

[27] Wang YC, Li YM, Yu HL, Ding JJ. Surface & Coatings Technology 200 (2005) 2080 – (2084).

Google Scholar

[28] Lau K, Goodwin C, Arias M, Mohan S, Baylink DJ. Bone 30 (2002) 705–711.

Google Scholar

[29] Harrison J, Melville AJ, Forsythe JS, Muddle BC. Biomaterials 25 (2004) 4977–4986.

Google Scholar

[30] Kim HW, Lee EJ, Kim HE, Salih V, Knowles JC. Biomaterials 26 (2005) 4395–4404.

Google Scholar

[31] Okazaki M, Miake Y, Tohda H, Yanagisawa T. Biomaterials 20(1999) 1421–1426.

DOI: 10.1016/s0142-9612(99)00049-6

Google Scholar

[32] Gross KA, Rodriguez-Lorenzo LM. Biomaterials 25(2004) 1385–1394.

Google Scholar

[33] Lugscheider E, Knepper M, Heimberg B. Mater Sci Mater Med 5 (1994) 371–5.

Google Scholar

[34] Wang H, Eliaz N, Xiang Z, Hsu HP, Spector M, Hobbs LW. Biomaterials 27(2006)4192–203.

Google Scholar

[35] Zhang S, Xianting Z, Yongsheng W, Kui C, Wenjian W. Surf Coat Tech 200 (2006) 6350–6354.

DOI: 10.1016/j.surfcoat.2005.11.033

Google Scholar

[36] Barinov SM, Tumanov SV, Fadeeva IV, Bibikov VY. Inorg Mater 39(2003)877–880.

DOI: 10.1023/a:1025041817017

Google Scholar

[37] Lee JH, Ryu HS, Lee DS, Hong KS, Chang BS, Lee CK. Biomaterials 26 (2005) 3249–3257.

Google Scholar

[38] Rokusek D, Davitt C, Bandyopadhyay A. J Biomed Mater Res 75A (2005) 588–594.

Google Scholar

[39] Gough JE, Notingher I, Hench LL. J Biomed Mat Res A 68A (2004) 640–50.

Google Scholar

[40] Suzette I, Faleh T, Robert M, Damien LN. Acta Biomaterialia 5 (2009) 2338–2347.

Google Scholar

[41] Hench LL, Wilson J. An introduction to bioceramics. Singapore: World Scientific; (1993).

Google Scholar