[1]
A. Kudo, Yugo Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews 38 (2009) 253–278.
DOI: 10.1039/b800489g
Google Scholar
[2]
X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation, Chemical Reviews 110 (2010) 6503–6570.
DOI: 10.1021/cr1001645
Google Scholar
[3]
B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 335 (1991) 737–440.
DOI: 10.1038/353737a0
Google Scholar
[4]
W. J Youngblood, S.H. A. Lee, K. Maeda, T.E. Mallouk, Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors, Accounts of Chemical Research 42 (2009) 1966–(1973).
DOI: 10.1021/ar9002398
Google Scholar
[5]
R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 11 (2010) 179–209.
DOI: 10.1016/j.jphotochemrev.2011.02.003
Google Scholar
[6]
T.V. Nguyen, H.C. Lee, O.B. Yang, The effect of pre-thermal treatment of TiO2 nano-particles on the performances of dye-sensitized solar cells, Solar Energy Materials & Solar Cells 90 (2006) 967–981.
DOI: 10.1016/j.solmat.2005.06.001
Google Scholar
[7]
S. Hazebroucq, F. Labat, D. Lincot, C. Adamo, Theoretical Insights on the Electronic Properties of Eosin Y, an Organic Dye for Photovoltaic Applications, Journal of Physical Chemistry A 112 (2008) 7264–7270.
DOI: 10.1021/jp8011624
Google Scholar
[8]
E. Dvininov, U.A. Joshi, J.R. Darwent, J.B. Claridge, Z.L. Xu, M.J. Rosseinsky, Room temperature oxidation of methyl orange and methanol over Pt–HCa2Nb3O10 and Pt–WO3 catalysts without light, Chemical Communications 47 (2011) 881–883.
DOI: 10.1039/c0cc03553j
Google Scholar
[9]
T. Ikeda, S. Fujiyoshi, H. i Kato, A. Kudo, H. Onishi, Time-Resolved Infrared Spectroscopy of K3Ta3B2O12 Photocatalysts for Water Splitting, Journal of Physical Chemistry B 110 (2006) 7883–7886.
DOI: 10.1002/chin.200628008
Google Scholar
[10]
D. Arney, P.A. Maggard, Effect of Platelet-Shaped Surfaces and Silver-Cation Exchange on the Photocatalytic Hydrogen Production of RbLaNb2O7, ACS Catalysis 2 (2012) 1711–1717.
DOI: 10.1021/cs200643h
Google Scholar
[11]
D.K. Kanan, E. A. Carter, Band Gap Engineering of MnO via ZnO Alloying: A Potential New Visible-Light Photocatalyst, Journal of Physical Chemistry C 116 (2012) 9876−9887.
DOI: 10.1021/jp300590d
Google Scholar
[12]
T. Sreethawong, C. Junbua, S. Chavadej, Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst, Journal of Power Sources 190 (2009).
DOI: 10.1016/j.jpowsour.2009.01.054
Google Scholar
[13]
R. Abe, K. Sayama, H. Arakawa, Efficient hydrogen evolution from aqueous mixture of I- and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation, Chemistry Physical Letters 362 (2002) 441–444.
DOI: 10.1016/s0009-2614(02)01140-5
Google Scholar
[14]
K. Maeda, M. Eguchi, W.J. Youngblood, T.E. Mallouk, Niobium Oxide Nanoscrolls as Building Blocks for Dye-Sensitized Hydrogen Production from Water under Visible Light Irradiation, Chemistry of Materials 20 (2008): 6770–6778.
DOI: 10.1021/cm801807b
Google Scholar
[15]
A.D. Paola, E. Garcia-Lopez, G. Marci, L. Palmisano, A survey of photocatalytic materials for environmental remediation, Journal of Hazardous Materials 211-212 (2012) 3–29.
DOI: 10.1016/j.jhazmat.2011.11.050
Google Scholar
[16]
D. Chatterjee, Effect of excited state redox properties of dye sensitizers on hydrogen production through photo-splitting of water over TiO2 photocatalyst, Catalysis Communications 11 (2010) 336–339.
DOI: 10.1016/j.catcom.2009.10.026
Google Scholar