A Novel Method to Fabricate Hydrophobic Surfaces Based on Candle Soot Particles and Polydimethylsiloxane

Article Preview

Abstract:

In order to realize the realistic applications of hydrophobic surfaces in large scales, its essential to develop new methods for the fabrication of these surfaces at low cost. In this paper, we demonstrate a novel and inexpensive method to prepare hydrophobic thin films on glass substrates. At first, we applied polydimethylsiloxane to modify the glass substrates, followed by adding nanocandle soot particles onto the surface of polydimethylsiloxane. After solidification in blast oven, we obtained the hydrophobic surfaces on the glass substrates. The resultant surfaces with contact angle of 143o exhibit remarkable hydrophobic properties. This new method is very simple and holds great potential in the widespread practical production of hydrophobic surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

610-615

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta. 202 (1997) 1-8.

DOI: 10.1007/s004250050096

Google Scholar

[2] A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, Preparation of hard super-hydrophobic films with visible light transmission, Thin Solid Films. 376 (2000) 140-143.

DOI: 10.1016/s0040-6090(00)01417-6

Google Scholar

[3] A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi and A. Fujishima, Transparent superhydrophobic thin films with self-Cleaning properties, Langmuir. 16 (2000) 7044-7047.

DOI: 10.1021/la000155k

Google Scholar

[4] X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang and L. Jiang, The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography, Advanced materials. 19 (2007) 2213-2217.

DOI: 10.1002/adma.200601946

Google Scholar

[5] F. Zhang, L. Zhao, H. Chen, S. Xu, D. G. Evans and X. Duan, Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum, Angew. Chem. Int. Ed. 47 (2008) 2466-2469.

DOI: 10.1002/anie.200704694

Google Scholar

[6] H. Liu, S. Szunerits, W. Xu and R. Boukherroub, Preparation of superhydrophobic coatings on Zinc as effective corrosion barriers, ACS Appl. Mater. Interfaces. 1 (2009) 1150-1153.

DOI: 10.1021/am900100q

Google Scholar

[7] T. Ishizaki, Y. Masuda and M. Sakamoto, Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution, Langmuir. 27 (2011).

DOI: 10.1021/la2002783

Google Scholar

[8] L. Feng, S. Li, H. Li, et al, Super-hydrophobic surface of aligned polyacrylonitrile nanofibers, Angew. Chem. 114 (2002) 1269-1271.

DOI: 10.1002/1521-3757(20020402)114:7<1269::aid-ange1269>3.0.co;2-e

Google Scholar

[9] K. Tadanaga, J. Morinaga, T. Minami, Formation of superhydrophobic-superhydrophilic pattern on flowerlike alumina thin film by the Sol-Gel method, J. Sol-Gel SciTechnol. 19 (2000) 211-214.

DOI: 10.1021/cm990643h

Google Scholar

[10] B. T. Qian and Z. Q. Shen, Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates, Langmuir. 21 (2005) 9007-9009.

DOI: 10.1021/la051308c

Google Scholar

[11] O. U. Nimittrakoolchai, S. Supothina, Polymer-based superhydrophobic coating fabricated from polyelectrolyte multilayers of poly (allylamin e hydrochloride) and poly (acrylic acid), Macromol. Symp. 264 (2008) 73-79.

DOI: 10.1002/masy.200850412

Google Scholar

[12] L. Jiang, Y. Zhao, J. Zhai, A lotus-leaf-like superhydrophobic surface: A porous Microsphere / nanofiber composite film prepared by electrohydrodynamics, Angew, Chem. Int. Ed. 43 (2004) 4338-4341.

DOI: 10.1002/anie.200460333

Google Scholar

[13] H. Y. Erbil, A. L. Demirel, Y. Avci, et al, Transformation of a Simple Plastic into a Superhydrophobic Surface, Science. 299 (2003) 1377-1380.

DOI: 10.1126/science.1078365

Google Scholar

[14] P. N. Manoudis, I. Karapanagiotis, A. Tsakalof, et al, Superhydrophobic composite films produced on various substrates, Langmuir. 24 (2008) 11225-11232.

DOI: 10.1021/la801817e

Google Scholar

[15] R. N. Wenzel, Surface roughness and contact angle (letter), Ind. Eng. Chem. 28 (1936) 988-994.

Google Scholar

[16] A. B. D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (1944) 546-561.

DOI: 10.1039/tf9444000546

Google Scholar

[17] X. Deng, L. Mammen, H. J. Butt and D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating, Science. 335 (2012) 67-70.

DOI: 10.1126/science.1207115

Google Scholar